Spaces:
Running
Running
File size: 6,235 Bytes
4abf8fb 85ab89d 236b7d5 85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION
import esm
# ProteinGPT Initialization Function
def initialize_chat(args):
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = 0
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cpu')
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cpu')
return chat
# Gradio Reset Function
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your protein structure and sequence first', interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
# Upload Function
def upload_protein(structure, sequence, text_input, chat_state):
# Check if structure and sequence files are valid
if structure is None or not structure.endswith(".pt"):
return (None, None, None, gr.update(placeholder="Invalid structure file, must be a .pt file.", interactive=True), chat_state, None)
if sequence is None or not sequence.endswith(".pt"):
return (None, None, None, gr.update(placeholder="Invalid sequence file, must be a .pt file.", interactive=True), chat_state, None)
# Load protein structure and sequence
pdb_embedding = torch.load(structure, map_location=torch.device('cpu'))
sample_pdb = pdb_embedding.to('cpu')
seq_embedding = torch.load(sequence, map_location=torch.device('cpu'))
sample_seq = seq_embedding.to('cpu')
# Initialize the conversation state
chat_state = CONV_VISION.copy()
img_list = []
# Upload protein data
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list)
# Return the required outputs
return (gr.update(interactive=False), # Disable structure file input
gr.update(interactive=False), # Disable sequence file input
gr.update(interactive=True, placeholder='Type and press Enter'), # Enable the text input box
gr.update(value="Start Chatting", interactive=False), # Update upload button state
chat_state, # Return the conversation state
img_list) # Return the list of images (if any)
# Ask Function
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
# Answer Function
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
img_list = [mat.half() for mat in img_list]
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=num_beams, temperature=temperature, max_length=2000)[0]
chatbot[-1][1] = llm_message
return chatbot, chat_state, img_list
# Command-line Argument Parsing
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", help="path to configuration file.", default='configs/evaluation.yaml')
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
# Demo Gradio Interface
title = """<h1 align="center">Demo of ProteinGPT</h1>"""
description = """<h3>Upload your protein sequence and structure and start chatting with your protein!</h3>"""
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://huggingface.co/AI-BIO/ProteinGPT-Llama3'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com'><img src='https://img.shields.io/badge/Github-Code-blue'></a></div>"""
args = parse_args() # Parse arguments to get config and model info
chat = initialize_chat(args) # Initialize ProteinGPT model
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
structure = gr.File(type="filepath", label="Upload Protein Structure", show_label=True)
sequence = gr.File(type="filepath", label="Upload Protein Sequence", show_label=True)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(minimum=1, maximum=5, value=1, step=1, interactive=True, label="Beam search numbers")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, interactive=True, label="Temperature")
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='ProteinGPT')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
upload_button.click(upload_protein,
[structure, sequence, text_input, chat_state],
[structure, sequence, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list])
clear.click(gradio_reset, [chat_state, img_list], [chatbot, structure, sequence, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(share=True)
|