File size: 12,571 Bytes
432dbc1
 
41ec323
432dbc1
f41f088
432dbc1
41ec323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432dbc1
2d68b9c
 
 
 
 
d423a74
2d68b9c
432dbc1
74e47b9
 
41ec323
 
 
 
 
 
 
 
f41f088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
f41f088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
 
 
 
f41f088
41ec323
f41f088
125389b
 
 
 
 
f41f088
 
 
 
 
125389b
 
 
f41f088
 
125389b
f41f088
 
 
 
 
125389b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f41f088
 
 
 
 
125389b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
f41f088
41ec323
f41f088
41ec323
 
 
 
 
 
 
 
 
 
 
 
 
 
f41f088
41ec323
 
 
 
7f7d174
41ec323
 
 
 
 
 
 
f41f088
41ec323
f41f088
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
 
 
 
 
8d8b439
41ec323
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#############################################################################################################
# Title:  Gradio Interface to LLM-chatbot (for recommending AI) with RAG-funcionality and ChromaDB on HF-Hub 
# Author: Andreas Fischer
# Date:   December 30th, 2023
# Last update: May 27th, 2024
##############################################################################################################


# Chroma-DB
#-----------
import os
import chromadb
dbPath="/home/af/Schreibtisch/gradio/Chroma/db" 
if(os.path.exists(dbPath)==False): 
  dbPath="/home/user/app/db"
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat()) 
print(client.get_version())  
print(client.list_collections()) 
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
print(str(client.list_collections()))

global collection
if("name=ChromaDB1" in str(client.list_collections())):
  print("ChromaDB1 found!")
  collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef)
else:
  print("ChromaDB1 created!")
  collection = client.create_collection(
    "ChromaDB1",
    embedding_function=sentence_transformer_ef,
    metadata={"hnsw:space": "cosine"})
  
  collection.add(
    documents=[
      "Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
      "Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
      "Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
      "Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning",
      "Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
      "Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
      "Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
    ], 
    metadatas=[{"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}], 
    ids=["ai1", "ai2", "ai3", "ai4", "ai5", "ai6", "ai7"], 
  )

print("Database ready!")
print(collection.count()) 


# Model
#-------
onPrem=False
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" 
if(onPrem==False): 
  modelPath=myModel
  from huggingface_hub import InferenceClient
  import gradio as gr
  client = InferenceClient(
    model=modelPath,
    #token="hf_..."
  )
else:
  import os
  import requests
  import subprocess
  #modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf"
  #modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf"
  modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
  if(os.path.exists(modelPath)==False):
    #url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
    url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
    response = requests.get(url)
    with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file:
      file.write(response.content)
    print("Model downloaded")  
    modelPath="./Mixtral-8x7b-instruct.gguf"
  print(modelPath)
  n="20" 
  if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
  command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
  subprocess.Popen(command)
  print("Server ready!")


# Check template
#----------------
if(False):
  from transformers import AutoTokenizer
  #mod="mistralai/Mixtral-8x22B-Instruct-v0.1"
  #mod="mistralai/Mixtral-8x7b-instruct-v0.1"
  mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"
  tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
  cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
  res=tok.apply_chat_template(cha)
  print(tok.decode(res))
  cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
  res=tok.apply_chat_template(cha)
  print(tok.decode(res))


# Gradio-GUI
#------------

import gradio as gr
import json
import re

def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True): 
  startOfString=""
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
  template0=" [INST]{system}\n  [/INST] </s>" 
  template1=" [INST] {message} [/INST]"
  template2=" {response}</s>"
  if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01
    ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
    template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>" 
    template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
    template2="{response}<|END_OF_TURN_TOKEN|>"
  if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    template0="<start_of_turn>user{system}</end_of_turn>" 
    template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
    template2="{response}</end_of_turn>"      
  if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s>
    startOfString="<s>"
    template0="[INST]{system}\n  [/INST] </s>"  
    template1="[INST] {message}[/INST]"
    template2=" {response}</s>"
  if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    startOfString="<s>"                     # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s>
    template0=" [INST]{system}\n  [/INST] </s>"  
    template1=" [INST] {message} [/INST]"
    template2=" {response}</s>"
  if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
    startOfString="<s>"
    template0="[INST]{system}\n [/INST]</s>"
    template1="[INST] {message} [/INST]"
    template2=" {response}</s>"
  if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
    template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
    template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
    template2="{response}<|end_of_turn|>"
  if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"    
  if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>"
    template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    template2="{response}<|eot_id|>\n"        
  if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
    template0="{system} " #<s>
    template1="USER: {message} ASSISTANT: "
    template2="{response}</s>"
  if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
    template0="Instruct: {system}\nOutput: Okay.\n"
    template1="Instruct: {message}\nOutput:"
    template2="{response}\n"  
  prompt = ""
  if RAGAddon is not None:
    system += RAGAddon
  if system is not None:
    prompt += template0.format(system=system) #"<s>"
  if history is not None:
    for user_message, bot_response in history[-historylimit:]:
      if user_message is None: user_message = "" 
      if bot_response is None: bot_response = ""
      bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
      if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
      if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])  
      if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) 
  if message is not None: prompt += template1.format(message=message[:zeichenlimit])                
  if system2 is not None:
    prompt += system2
  return startOfString+prompt



def response(
    message, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2: temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    addon=""
    results=collection.query(
      query_texts=[message],
      n_results=2,
      #where={"source": "google-docs"}
      #where_document={"$contains":"search_string"}
    )
    dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]]
    sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]]
    results=results['documents'][0]
    combination = zip(results,dists,sources)
    combination = [' '.join(triplets) for triplets in combination]
    print(combination)
    if(len(results)>1):
      addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
    system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete KI-Tools empfiehlt." #+addon #+"\n\nUser-Anliegen:"   
    #body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM
    #formatted_prompt = extend_prompt(system+"\n"+prompt,  None) #history)
    prompt=extend_prompt(
      message,                  # current message of the user
      history,                  # complete history 
      system,                   # system prompt
      addon,                    # RAG-component added to the system prompt
      None,                     # fictive first words of the AI (neither displayed nor stored)
      historylimit=4,           # number of past messages to consider for response to current message
      removeHTML=True           # remove HTML-components from History (to prevent bugs with Markdown)
    )
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output
    output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
    yield output

gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True),title="German AI-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")