File size: 12,571 Bytes
432dbc1 41ec323 432dbc1 f41f088 432dbc1 41ec323 432dbc1 2d68b9c d423a74 2d68b9c 432dbc1 74e47b9 41ec323 f41f088 41ec323 f41f088 41ec323 f41f088 41ec323 f41f088 125389b f41f088 125389b f41f088 125389b f41f088 125389b f41f088 125389b 41ec323 f41f088 41ec323 f41f088 41ec323 f41f088 41ec323 7f7d174 41ec323 f41f088 41ec323 f41f088 41ec323 8d8b439 41ec323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
#############################################################################################################
# Title: Gradio Interface to LLM-chatbot (for recommending AI) with RAG-funcionality and ChromaDB on HF-Hub
# Author: Andreas Fischer
# Date: December 30th, 2023
# Last update: May 27th, 2024
##############################################################################################################
# Chroma-DB
#-----------
import os
import chromadb
dbPath="/home/af/Schreibtisch/gradio/Chroma/db"
if(os.path.exists(dbPath)==False):
dbPath="/home/user/app/db"
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
print(str(client.list_collections()))
global collection
if("name=ChromaDB1" in str(client.list_collections())):
print("ChromaDB1 found!")
collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef)
else:
print("ChromaDB1 created!")
collection = client.create_collection(
"ChromaDB1",
embedding_function=sentence_transformer_ef,
metadata={"hnsw:space": "cosine"})
collection.add(
documents=[
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
"Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning",
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
],
metadatas=[{"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}],
ids=["ai1", "ai2", "ai3", "ai4", "ai5", "ai6", "ai7"],
)
print("Database ready!")
print(collection.count())
# Model
#-------
onPrem=False
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
if(onPrem==False):
modelPath=myModel
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
model=modelPath,
#token="hf_..."
)
else:
import os
import requests
import subprocess
#modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf"
#modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf"
modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
response = requests.get(url)
with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./Mixtral-8x7b-instruct.gguf"
print(modelPath)
n="20"
if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
subprocess.Popen(command)
print("Server ready!")
# Check template
#----------------
if(False):
from transformers import AutoTokenizer
#mod="mistralai/Mixtral-8x22B-Instruct-v0.1"
#mod="mistralai/Mixtral-8x7b-instruct-v0.1"
mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"
tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
res=tok.apply_chat_template(cha)
print(tok.decode(res))
cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
res=tok.apply_chat_template(cha)
print(tok.decode(res))
# Gradio-GUI
#------------
import gradio as gr
import json
import re
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True):
startOfString=""
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
template0=" [INST]{system}\n [/INST] </s>"
template1=" [INST] {message} [/INST]"
template2=" {response}</s>"
if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>"
template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
template2="{response}<|END_OF_TURN_TOKEN|>"
if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
template0="<start_of_turn>user{system}</end_of_turn>"
template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
template2="{response}</end_of_turn>"
if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s>
startOfString="<s>"
template0="[INST]{system}\n [/INST] </s>"
template1="[INST] {message}[/INST]"
template2=" {response}</s>"
if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
startOfString="<s>" # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s>
template0=" [INST]{system}\n [/INST] </s>"
template1=" [INST] {message} [/INST]"
template2=" {response}</s>"
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
startOfString="<s>"
template0="[INST]{system}\n [/INST]</s>"
template1="[INST] {message} [/INST]"
template2=" {response}</s>"
if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
template2="{response}<|end_of_turn|>"
if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>"
template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
template2="{response}<|eot_id|>\n"
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
template0="{system} " #<s>
template1="USER: {message} ASSISTANT: "
template2="{response}</s>"
if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
template0="Instruct: {system}\nOutput: Okay.\n"
template1="Instruct: {message}\nOutput:"
template2="{response}\n"
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is None: user_message = ""
if bot_response is None: bot_response = ""
bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
if system2 is not None:
prompt += system2
return startOfString+prompt
def response(
message, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
addon=""
results=collection.query(
query_texts=[message],
n_results=2,
#where={"source": "google-docs"}
#where_document={"$contains":"search_string"}
)
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]]
sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]]
results=results['documents'][0]
combination = zip(results,dists,sources)
combination = [' '.join(triplets) for triplets in combination]
print(combination)
if(len(results)>1):
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete KI-Tools empfiehlt." #+addon #+"\n\nUser-Anliegen:"
#body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM
#formatted_prompt = extend_prompt(system+"\n"+prompt, None) #history)
prompt=extend_prompt(
message, # current message of the user
history, # complete history
system, # system prompt
addon, # RAG-component added to the system prompt
None, # fictive first words of the AI (neither displayed nor stored)
historylimit=4, # number of past messages to consider for response to current message
removeHTML=True # remove HTML-components from History (to prevent bugs with Markdown)
)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
yield output
gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True),title="German AI-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!") |