Spaces:
Sleeping
Sleeping
AjithKSenthil
commited on
Commit
·
76aaad4
1
Parent(s):
16e3b84
Upload 2 files
Browse files
ChatAttachmentAnalysisWithValidation.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.ensemble import RandomForestRegressor
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
6 |
+
|
7 |
+
# Read your data file
|
8 |
+
datafile_path = "data/chat_transcripts_with_embeddings_and_scores.csv"
|
9 |
+
|
10 |
+
df = pd.read_csv(datafile_path)
|
11 |
+
|
12 |
+
# Convert embeddings to numpy arrays
|
13 |
+
df['embedding'] = df['embedding'].apply(lambda x: [float(num) for num in x.strip('[]').split(',')])
|
14 |
+
|
15 |
+
# Split the data into features (X) and labels (y)
|
16 |
+
X = list(df.embedding.values)
|
17 |
+
y = df[['avoide', 'avoida', 'avoidb', 'avoidc', 'avoidd', 'anxietye', 'anxietya', 'anxietyb', 'anxietyc', 'anxietyd']].values
|
18 |
+
|
19 |
+
# Split data into training, validation, and testing sets
|
20 |
+
X_train, X_val_test, y_train, y_val_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
21 |
+
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, random_state=42)
|
22 |
+
|
23 |
+
# Train your regression model
|
24 |
+
rfr = RandomForestRegressor(n_estimators=100)
|
25 |
+
rfr.fit(X_train, y_train)
|
26 |
+
|
27 |
+
# Make predictions on the validation data and adjust your model parameters accordingly
|
28 |
+
val_preds = rfr.predict(X_val)
|
29 |
+
val_mse = mean_squared_error(y_val, val_preds)
|
30 |
+
val_mae = mean_absolute_error(y_val, val_preds)
|
31 |
+
print(f"Validation MSE: {val_mse:.2f}, Validation MAE: {val_mae:.2f}")
|
32 |
+
|
33 |
+
# After adjusting your model parameters, make predictions on the test data
|
34 |
+
test_preds = rfr.predict(X_test)
|
35 |
+
|
36 |
+
# Evaluate your model
|
37 |
+
test_mse = mean_squared_error(y_test, test_preds)
|
38 |
+
test_mae = mean_absolute_error(y_test, test_preds)
|
39 |
+
print(f"Test MSE: {test_mse:.2f}, Test MAE: {test_mae:.2f}")
|
ChatAttachmentAnalysisXGWithValidation.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import xgboost as xgb
|
4 |
+
from sklearn.multioutput import MultiOutputRegressor
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
7 |
+
|
8 |
+
# Read your data file
|
9 |
+
datafile_path = "data/chat_transcripts_with_embeddings_and_scores.csv"
|
10 |
+
|
11 |
+
df = pd.read_csv(datafile_path)
|
12 |
+
|
13 |
+
# Convert embeddings to numpy arrays
|
14 |
+
df['embedding'] = df['embedding'].apply(lambda x: np.array(eval(x)))
|
15 |
+
|
16 |
+
# Split the data into features (X) and labels (y)
|
17 |
+
X = list(df.embedding.values)
|
18 |
+
y = df[['avoide', 'avoida', 'avoidb', 'avoidc', 'avoidd', 'anxietye', 'anxietya', 'anxietyb', 'anxietyc', 'anxietyd']].values
|
19 |
+
|
20 |
+
# Split data into training, validation, and testing sets
|
21 |
+
X_train, X_val_test, y_train, y_val_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
22 |
+
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, random_state=42)
|
23 |
+
|
24 |
+
# Train your regression model
|
25 |
+
xg_reg = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 5, alpha = 10, n_estimators = 10)
|
26 |
+
multioutput_reg = MultiOutputRegressor(xg_reg)
|
27 |
+
multioutput_reg.fit(np.array(X_train).tolist(), y_train)
|
28 |
+
|
29 |
+
# Make predictions on the validation data and tune your model parameters accordingly
|
30 |
+
val_preds = multioutput_reg.predict(np.array(X_val).tolist())
|
31 |
+
val_mse = mean_squared_error(y_val, val_preds)
|
32 |
+
val_mae = mean_absolute_error(y_val, val_preds)
|
33 |
+
print(f"Validation MSE: {val_mse:.2f}, Validation MAE: {val_mae:.2f}")
|
34 |
+
|
35 |
+
# After tuning your model, make predictions on the test data
|
36 |
+
test_preds = multioutput_reg.predict(np.array(X_test).tolist())
|
37 |
+
|
38 |
+
# Evaluate your model
|
39 |
+
test_mse = mean_squared_error(y_test, test_preds)
|
40 |
+
test_mae = mean_absolute_error(y_test, test_preds)
|
41 |
+
print(f"Test MSE: {test_mse:.2f}, Test MAE: {test_mae:.2f}")
|