|
import streamlit as st |
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
import os |
|
|
|
api_key = os.environ['API_KEY'] |
|
|
|
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FHrishikesh332%2Fautotrain-meme-classification-42897109437%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
headers = {"Authorization": f"Bearer {api_key}"} |
|
|
|
def query(data : bytes): |
|
|
|
response = requests.post(API_URL, headers=headers, data=data) |
|
return response.json() |
|
|
|
st.markdown("<h1 style='text-align: center;'>Memeter π¬</h1>", unsafe_allow_html=True) |
|
st.markdown("---") |
|
with st.sidebar: |
|
st.title("Memometer") |
|
st.caption(''' |
|
Memeter is an application used for the classification of whether the images provided is meme or not meme |
|
''', unsafe_allow_html=False) |
|
|
|
img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) |
|
|
|
if img is not None: |
|
|
|
data = img.read() |
|
output = query(data) |
|
st.write("Predicted Output:", output) |