File size: 8,726 Bytes
256da70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6e7cb
 
 
 
 
 
 
 
256da70
cb6e7cb
 
 
 
 
256da70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6e7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256da70
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6e7cb
 
256da70
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr  # pyright: ignore[reportMissingTypeStubs]
import pillow_heif  # pyright: ignore[reportMissingTypeStubs]
import spaces  # pyright: ignore[reportMissingTypeStubs]
import torch
from PIL import Image
from refiners.fluxion.utils import manual_seed, no_grad

from utils import LightingPreference, load_ic_light, resize_modulo_8

pillow_heif.register_heif_opener()  # pyright: ignore[reportUnknownMemberType]
pillow_heif.register_avif_opener()  # pyright: ignore[reportUnknownMemberType]

TITLE = """
# IC-Light with Refiners
"""

# initialize the enhancer, on the cpu
DEVICE_CPU = torch.device("cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
ic_light = load_ic_light(device=DEVICE_CPU, dtype=DTYPE)

# "move" the enhancer to the gpu, this is handled/intercepted by Zero GPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ic_light.to(device=DEVICE, dtype=DTYPE)
ic_light.device = DEVICE
ic_light.dtype = DTYPE
ic_light.solver = ic_light.solver.to(device=DEVICE, dtype=DTYPE)


@spaces.GPU
@no_grad()
def process(
    image: Image.Image,
    light_pref: str,
    prompt: str,
    negative_prompt: str,
    strength_first_pass: float,
    strength_second_pass: float,
    condition_scale: float,
    num_inference_steps: int,
    seed: int,
) -> Image.Image:
    assert image.mode == "RGBA"
    assert 0 <= strength_second_pass <= 1
    assert 0 <= strength_first_pass <= 1
    assert num_inference_steps > 0
    assert seed >= 0

    # set the seed
    manual_seed(seed)

    # resize image to ~768x768
    image = resize_modulo_8(image, 768)

    # split RGB and alpha channel
    mask = image.getchannel("A")
    image = image.convert("RGB")

    # compute embeddings
    clip_text_embedding = ic_light.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
    ic_light.set_ic_light_condition(image=image, mask=mask)

    # get the light_pref_image
    light_pref_image = LightingPreference.from_str(value=light_pref).get_init_image(
        width=image.width,
        height=image.height,
        interval=(0.2, 0.8),
    )

    # if no light preference is provided, do a full strength first pass
    if light_pref_image is None:
        x = torch.randn_like(ic_light._ic_light_condition)  # pyright: ignore[reportPrivateUsage]
        strength_first_pass = 1.0
    else:
        x = ic_light.lda.image_to_latents(light_pref_image)
        x = ic_light.solver.add_noise(x, noise=torch.randn_like(x), step=0)

    # configure the first pass
    num_steps = int(round(num_inference_steps / strength_first_pass))
    first_step = int(num_steps * (1 - strength_first_pass))
    ic_light.set_inference_steps(num_steps, first_step)

    # first pass
    for step in ic_light.steps:
        x = ic_light(
            x,
            step=step,
            clip_text_embedding=clip_text_embedding,
            condition_scale=condition_scale,
        )

    # configure the second pass
    num_steps = int(round(num_inference_steps / strength_second_pass))
    first_step = int(num_steps * (1 - strength_second_pass))
    ic_light.set_inference_steps(num_steps, first_step)

    # initialize the latents
    x = ic_light.solver.add_noise(x, noise=torch.randn_like(x), step=first_step)

    # second pass
    for step in ic_light.steps:
        x = ic_light(
            x,
            step=step,
            clip_text_embedding=clip_text_embedding,
            condition_scale=condition_scale,
        )

    return ic_light.lda.latents_to_image(x)


with gr.Blocks() as demo:
    gr.Markdown(TITLE)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Input Image (RGBA)",
                image_mode="RGBA",
                type="pil",
            )
            run_button = gr.Button(
                value="Relight Image",
            )
        with gr.Column():
            output_image = gr.Image(
                label="Relighted Image (RGB)",
                image_mode="RGB",
                type="pil",
            )

    with gr.Accordion("Advanced Settings", open=True):
        prompt = gr.Textbox(
            label="Prompt",
            placeholder="bright green neon light, best quality, highres",
        )
        neg_prompt = gr.Textbox(
            label="Negative Prompt",
            placeholder="worst quality, low quality, normal quality",
        )
        light_pref = gr.Radio(
            choices=["None", "Left", "Right", "Top", "Bottom"],
            label="Light direction preference",
            value="None",
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=100_000,
            value=69_420,
            step=1,
        )
        condition_scale = gr.Slider(
            label="Condition scale",
            minimum=0.5,
            maximum=2,
            value=1.25,
            step=0.05,
        )
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=50,
            value=25,
            step=1,
        )
        with gr.Row():
            strength_first_pass = gr.Slider(
                label="Strength of the first pass",
                minimum=0,
                maximum=1,
                value=0.9,
                step=0.1,
            )
            strength_second_pass = gr.Slider(
                label="Strength of the second pass",
                minimum=0,
                maximum=1,
                value=0.5,
                step=0.1,
            )

    run_button.click(
        fn=process,
        inputs=[
            input_image,
            light_pref,
            prompt,
            neg_prompt,
            strength_first_pass,
            strength_second_pass,
            condition_scale,
            num_inference_steps,
            seed,
        ],
        outputs=output_image,
    )

    gr.Examples(  # pyright: ignore[reportUnknownMemberType]
        examples=[
            [
                "examples/plant.png",
                "None",
                "blue purple neon light, cyberpunk city background, high-quality professional studo photography, realistic soft lighting, HEIC, CR2, NEF",
                "dirty, messy, worst quality, low quality, watermark, signature, jpeg artifacts, deformed, monochrome, black and white",
                0.9,
                0.5,
                1.25,
                25,
                69_420,
            ],
            [
                "examples/plant.png",
                "Right",
                "blue purple neon light, cyberpunk city background, high-quality professional studo photography, realistic soft lighting, HEIC, CR2, NEF",
                "dirty, messy, worst quality, low quality, watermark, signature, jpeg artifacts, deformed, monochrome, black and white",
                0.9,
                0.5,
                1.25,
                25,
                69_420,
            ],
            [
                "examples/plant.png",
                "Left",
                "floor is blue ice cavern, stalactite, high-quality professional studo photography, realistic soft lighting, HEIC, CR2, NEF",
                "dirty, messy, worst quality, low quality, watermark, signature, jpeg artifacts, deformed, monochrome, black and white",
                0.9,
                0.5,
                1.25,
                25,
                69_420,
            ],
            [
                "examples/chair.png",
                "Right",
                "god rays, fluffy clouds, peaceful surreal atmosphere, high-quality, HEIC, CR2, NEF",
                "dirty, messy, worst quality, low quality, watermark, signature, jpeg artifacts, deformed, monochrome, black and white",
                0.9,
                0.5,
                1.25,
                25,
                69,
            ],
            [
                "examples/bunny.png",
                "Left",
                "grass field, high-quality, HEIC, CR2, NEF",
                "dirty, messy, worst quality, low quality, watermark, signature, jpeg artifacts, deformed, monochrome, black and white",
                0.9,
                0.5,
                1.25,
                25,
                420,
            ],
        ],
        inputs=[
            input_image,
            light_pref,
            prompt,
            neg_prompt,
            strength_first_pass,
            strength_second_pass,
            condition_scale,
            num_inference_steps,
            seed,
        ],
        outputs=output_image,
        fn=process,
        cache_examples=True,
        cache_mode="lazy",
        run_on_click=False,
    )

demo.launch()