import gradio as gr from transformers import AutoModel, AutoTokenizer # Load a small CPU model for text to vector processing model_name = "sentence-transformers/all-MiniLM-L6-v2" model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def text_to_vector(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) vector = outputs.pooler_output.detach().numpy()[0] return vector demo = gr.Interface( fn=text_to_vector, inputs=gr.Textbox(label="Enter text"), outputs=gr.Textbox(label="Text Vector"), title="Text to Vector", description="This demo uses a small CPU model to convert text to vector." ) demo.launch()