Vectorize / app.py
0xalfroz's picture
Update app.py
226cae8 verified
raw
history blame
810 Bytes
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import numpy as np
# Load a small CPU model for text to vector processing
model_name = "sentence-transformers/all-mpnet-base-v2"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def text_to_vector(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
vector = outputs.pooler_output.detach().numpy()[0]
# Convert to a string representation for display
return ", ".join(map(str, vector))
demo = gr.Interface(
fn=text_to_vector,
inputs=gr.Textbox(label="Enter text"),
outputs=gr.Textbox(label="Text Vector"),
title="Text to Vector",
description="This demo uses a small CPU model to convert text to vector."
)
demo.launch()