nllb-3.3B-demo / app.py
0x7o
Update app.py
d360479 verified
import os
import torch
import gradio as gr
import time
import spaces
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes
def load_models():
# build model and tokenizer
model_name_dict = {'nllb-distilled-1.3B': 'facebook/nllb-200-3.3B'}
model_dict = {}
for call_name, real_name in model_name_dict.items():
print('\tLoading model: %s' % call_name)
model = AutoModelForSeq2SeqLM.from_pretrained(real_name).cuda()
tokenizer = AutoTokenizer.from_pretrained(real_name)
model_dict[call_name+'_model'] = model
model_dict[call_name+'_tokenizer'] = tokenizer
return model_dict
@spaces.GPU
def translation(source, target, text):
if len(model_dict) == 2:
model_name = 'nllb-distilled-1.3B'
start_time = time.time()
source = flores_codes[source]
target = flores_codes[target]
model = model_dict[model_name + '_model']
tokenizer = model_dict[model_name + '_tokenizer']
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target, device=0)
output = translator(text, max_length=400)
end_time = time.time()
output = output[0]['translation_text']
result = {'inference_time': end_time - start_time,
'source': source,
'target': target,
'result': output}
return result
if __name__ == '__main__':
print('\tinit models')
global model_dict
model_dict = load_models()
# define gradio demo
lang_codes = list(flores_codes.keys())
#inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
inputs = [gr.Dropdown(lang_codes, default='English', label='Source'),
gr.Dropdown(lang_codes, default='Korean', label='Target'),
gr.Textbox(lines=5, label="Input text"),
]
outputs = gr.JSON()
title = "NLLB 3.3B demo"
demo_status = "Demo is running on GPU"
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
examples = [
['English', 'Russian', 'Hi. nice to meet you']
]
gr.Interface(translation,
inputs,
outputs,
title=title,
description=description,
examples=examples,
examples_per_page=50,
).launch()