File size: 10,249 Bytes
e659bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python

# This model is part of the paper "ReconResNet: Regularised Residual Learning for MR Image Reconstruction of Undersampled Cartesian and Radial Data" (https://doi.org/10.1016/j.compbiomed.2022.105321)
# and has been published on GitHub: https://github.com/soumickmj/NCC1701/blob/main/Bridge/WarpDrives/ReconResNet/ReconResNet.py

import torch.nn as nn
from tricorder.torch.transforms import Interpolator

__author__ = "Soumick Chatterjee"
__copyright__ = "Copyright 2019, Soumick Chatterjee & OvGU:ESF:MEMoRIAL"
__credits__ = ["Soumick Chatterjee"]

__license__ = "apache-2.0"
__version__ = "1.0.0"
__email__ = "[email protected]"
__status__ = "Published"


class ResidualBlock(nn.Module):
    def __init__(self, in_features, drop_prob=0.2):
        super(ResidualBlock, self).__init__()

        conv_block = [layer_pad(1),
                      layer_conv(in_features, in_features, 3),
                      layer_norm(in_features),
                      act_relu(),
                      layer_drop(p=drop_prob, inplace=True),
                      layer_pad(1),
                      layer_conv(in_features, in_features, 3),
                      layer_norm(in_features)]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class DownsamplingBlock(nn.Module):
    def __init__(self, in_features, out_features):
        super(DownsamplingBlock, self).__init__()

        conv_block = [layer_conv(in_features, out_features, 3, stride=2, padding=1),
                      layer_norm(out_features),
                      act_relu()]
        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return self.conv_block(x)


class UpsamplingBlock(nn.Module):
    def __init__(self, in_features, out_features, mode="convtrans", interpolator=None, post_interp_convtrans=False):
        super(UpsamplingBlock, self).__init__()

        self.interpolator = interpolator
        self.mode = mode
        self.post_interp_convtrans = post_interp_convtrans
        if self.post_interp_convtrans:
            self.post_conv = layer_conv(out_features, out_features, 1)

        if mode == "convtrans":
            conv_block = [layer_convtrans(
                in_features, out_features, 3, stride=2, padding=1, output_padding=1), ]
        else:
            conv_block = [layer_pad(1),
                          layer_conv(in_features, out_features, 3), ]
        conv_block += [layer_norm(out_features),
                       act_relu()]
        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x, out_shape=None):
        if self.mode == "convtrans":
            if self.post_interp_convtrans:
                x = self.conv_block(x)
                if x.shape[2:] != out_shape:
                    return self.post_conv(self.interpolator(x, out_shape))
                else:
                    return x
            else:
                return self.conv_block(x)
        else:
            return self.conv_block(self.interpolator(x, out_shape))


class ReconResNetBase(nn.Module):
    def __init__(self, in_channels=1, out_channels=1, res_blocks=14, starting_nfeatures=64, updown_blocks=2, is_relu_leaky=True, do_batchnorm=False, res_drop_prob=0.2,
                 is_replicatepad=0, out_act="sigmoid", forwardV=0, upinterp_algo='convtrans', post_interp_convtrans=False, is3D=False):  # should use 14 as that gives number of trainable parameters close to number of possible pixel values in a image 256x256
        super(ReconResNetBase, self).__init__()

        layers = {}
        if is3D:
            layers["layer_conv"] = nn.Conv3d
            layers["layer_convtrans"] = nn.ConvTranspose3d
            if do_batchnorm:
                layers["layer_norm"] = nn.BatchNorm3d
            else:
                layers["layer_norm"] = nn.InstanceNorm3d
            layers["layer_drop"] = nn.Dropout3d
            if is_replicatepad == 0:
                layers["layer_pad"] = nn.ReflectionPad3d
            elif is_replicatepad == 1:
                layers["layer_pad"] = nn.ReplicationPad3d
            layers["interp_mode"] = 'trilinear'
        else:
            layers["layer_conv"] = nn.Conv2d
            layers["layer_convtrans"] = nn.ConvTranspose2d
            if do_batchnorm:
                layers["layer_norm"] = nn.BatchNorm2d
            else:
                layers["layer_norm"] = nn.InstanceNorm2d
            layers["layer_drop"] = nn.Dropout2d
            if is_replicatepad == 0:
                layers["layer_pad"] = nn.ReflectionPad2d
            elif is_replicatepad == 1:
                layers["layer_pad"] = nn.ReplicationPad2d
            layers["interp_mode"] = 'bilinear'
        if is_relu_leaky:
            layers["act_relu"] = nn.PReLU
        else:
            layers["act_relu"] = nn.ReLU
        globals().update(layers)

        self.forwardV = forwardV
        self.upinterp_algo = upinterp_algo

        interpolator = Interpolator(
            mode=layers["interp_mode"] if self.upinterp_algo == "convtrans" else self.upinterp_algo)

        # Initial convolution block
        intialConv = [layer_pad(3),
                      layer_conv(in_channels, starting_nfeatures, 7),
                      layer_norm(starting_nfeatures),
                      act_relu()]

        # Downsampling [need to save the shape for upsample]
        downsam = []
        in_features = starting_nfeatures
        out_features = in_features*2
        for _ in range(updown_blocks):
            downsam.append(DownsamplingBlock(in_features, out_features))
            in_features = out_features
            out_features = in_features*2

        # Residual blocks
        resblocks = []
        for _ in range(res_blocks):
            resblocks += [ResidualBlock(in_features, res_drop_prob)]

        # Upsampling
        upsam = []
        out_features = in_features//2
        for _ in range(updown_blocks):
            upsam.append(UpsamplingBlock(in_features, out_features,
                         self.upinterp_algo, interpolator, post_interp_convtrans))
            in_features = out_features
            out_features = in_features//2

        # Output layer
        finalconv = [layer_pad(3),
                     layer_conv(starting_nfeatures, out_channels, 7), ]

        if out_act == "sigmoid":
            finalconv += [nn.Sigmoid(), ]
        elif out_act == "relu":
            finalconv += [act_relu(), ]
        elif out_act == "tanh":
            finalconv += [nn.Tanh(), ]

        self.intialConv = nn.Sequential(*intialConv)
        self.downsam = nn.ModuleList(downsam)
        self.resblocks = nn.Sequential(*resblocks)
        self.upsam = nn.ModuleList(upsam)
        self.finalconv = nn.Sequential(*finalconv)

        if self.forwardV == 0:
            self.forward = self.forwardV0
        elif self.forwardV == 1:
            self.forward = self.forwardV1
        elif self.forwardV == 2:
            self.forward = self.forwardV2
        elif self.forwardV == 3:
            self.forward = self.forwardV3
        elif self.forwardV == 4:
            self.forward = self.forwardV4
        elif self.forwardV == 5:
            self.forward = self.forwardV5

    def forwardV0(self, x):
        # v0: Original Version
        x = self.intialConv(x)
        shapes = []
        for downblock in self.downsam:
            shapes.append(x.shape[2:])
            x = downblock(x)
        x = self.resblocks(x)
        for i, upblock in enumerate(self.upsam):
            x = upblock(x, shapes[-1-i])
        return self.finalconv(x)

    def forwardV1(self, x):
        # v1: input is added to the final output
        out = self.intialConv(x)
        shapes = []
        for downblock in self.downsam:
            shapes.append(out.shape[2:])
            out = downblock(out)
        out = self.resblocks(out)
        for i, upblock in enumerate(self.upsam):
            out = upblock(out, shapes[-1-i])
        return x + self.finalconv(out)

    def forwardV2(self, x):
        # v2: residual of v1 + input to the residual blocks added back with the output
        out = self.intialConv(x)
        shapes = []
        for downblock in self.downsam:
            shapes.append(out.shape[2:])
            out = downblock(out)
        out = out + self.resblocks(out)
        for i, upblock in enumerate(self.upsam):
            out = upblock(out, shapes[-1-i])
        return x + self.finalconv(out)

    def forwardV3(self, x):
        # v3: residual of v2 + input of the initial conv added back with the output
        out = x + self.intialConv(x)
        shapes = []
        for downblock in self.downsam:
            shapes.append(out.shape[2:])
            out = downblock(out)
        out = out + self.resblocks(out)
        for i, upblock in enumerate(self.upsam):
            out = upblock(out, shapes[-1-i])
        return x + self.finalconv(out)

    def forwardV4(self, x):
        # v4: residual of v3 + output of the initial conv added back with the input of final conv
        iniconv = x + self.intialConv(x)
        shapes = []
        if len(self.downsam) > 0:
            for i, downblock in enumerate(self.downsam):
                if i == 0:
                    shapes.append(iniconv.shape[2:])
                    out = downblock(iniconv)
                else:
                    shapes.append(out.shape[2:])
                    out = downblock(out)
        else:
            out = iniconv
        out = out + self.resblocks(out)
        for i, upblock in enumerate(self.upsam):
            out = upblock(out, shapes[-1-i])
        out = iniconv + out
        return x + self.finalconv(out)

    def forwardV5(self, x):
        # v5: residual of v4 + individual down blocks with individual up blocks
        outs = [x + self.intialConv(x)]
        shapes = []
        for i, downblock in enumerate(self.downsam):
            shapes.append(outs[-1].shape[2:])
            outs.append(downblock(outs[-1]))
        outs[-1] = outs[-1] + self.resblocks(outs[-1])
        for i, upblock in enumerate(self.upsam):
            outs[-1] = upblock(outs[-1], shapes[-1-i])
            outs[-1] = outs[-2] + outs.pop()
        return x + self.finalconv(outs.pop())