hacendado edumunozsala commited on
Commit
28246a4
·
verified ·
1 Parent(s): 9ddff5b

Update README (#2)

Browse files

- Update README (cbd36a5f3a8cb33770308b50f1c7ff8810406051)


Co-authored-by: Eduardo Muñoz Sala <[email protected]>

Files changed (1) hide show
  1. README.md +251 -56
README.md CHANGED
@@ -8,94 +8,104 @@ tags:
8
  - sft
9
  - generated_from_trainer
10
  base_model: google/gemma-7b
 
 
11
  ---
12
 
13
- # Model Card for Model ID
 
14
 
15
- <!-- Provide a quick summary of what the model is/does. -->
16
 
 
 
17
 
 
18
 
19
- ## Model Details
 
 
 
 
 
 
 
 
20
 
 
 
 
21
 
22
  ### Model Description
23
 
24
- <!-- Provide a longer summary of what this model is. -->
25
- This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset.
26
 
27
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
28
 
29
- - **Developed by:** [Hacendado](https://huggingface.co/hacendado) and QA-legal-refugees team
30
 
31
- - **Language(s) (NLP):** [Spanish]
32
- - **Finetuned from model [optional]:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
33
 
34
- ## Uses
 
 
 
35
 
36
- ### Direct Use
37
- The primary objective of this model is to facilitate question answering (QA) tasks pertaining to Spanish refugee legislation. With its refined understanding of the nuances and intricacies of this legal domain
 
 
 
 
38
 
 
39
 
40
- ### Out-of-Scope Use
 
 
41
 
42
- Misuse includes any application that promotes unethical practices, misinterprets refugee law, or uses the model for malicious purposes. The model is not designed to replace professional legal advice.
43
 
 
 
44
 
45
- ## Bias, Risks, and Limitations
46
 
47
- The model, while powerful, has limitations inherent to AI, including biases present in the training data. It may not cover all nuances of refugee regulations or adapt to changes in law without updates.
48
 
 
49
 
50
- ## Training Details
51
 
52
- ### Training Data
53
 
54
- The dataset used was [instruct-legal-refugiados-es](https://huggingface.co/datasets/somosnlp/instruct-legal-refugiados-es)
55
- We wanted to make a conversation model so we investigated the base model prompt in order to make conversational base on [chatml format](https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md#working-with-chat-markup-language-chatml)
56
 
57
- we identified the special tokens so the model could understand the different roles in the conversation
58
 
59
- Example
60
- ```
61
- <bos><|im_start|>system
62
- You are Gemma.<|im_end|>
63
- <|im_start|>user
64
- Hello, how are you?<|im_end|>
65
- <|im_start|>assistant
66
- I'm doing great. How can I help you today?<|im_end|>\n<eos>
67
- ```
68
 
69
- so we used [Phil Schmid's gemma chatml tokenizer](https://huggingface.co/philschmid/gemma-tokenizer-chatml) to adapt our dataset for training
70
 
71
- ### Training Procedure
72
- The training was done using RTX 4090 from Vast.ai with PeRF and Lora
73
 
74
- #### Training hyperparameters
75
 
76
- The following hyperparameters were used during training:
77
- - learning_rate: 5e-05
78
- - train_batch_size: 2
79
- - eval_batch_size: 8
80
- - seed: 66
81
- - gradient_accumulation_steps: 2
82
- - total_train_batch_size: 4
83
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
84
- - lr_scheduler_type: constant
85
- - lr_scheduler_warmup_ratio: 0.03
86
- - num_epochs: 3
87
 
88
- ## Environmental Impact
89
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact/#compute) presented in Lacoste et al. (2019).
90
 
91
- - **Hardware Type**: 1 X RTX4090
92
- - **Hours used**: 4
93
- - **Cloud Provider**: Vast.ai
94
- - **Compute Region**: West Europe
95
- - **Carbon Emitted**: 350W x 4h = 1.4 kWh x 0.57 kg eq. CO2/kWh = 0.8 kg eq. CO2
 
 
96
 
 
97
 
98
- ## Inference Example
99
 
100
  ```python
101
  import torch
@@ -107,8 +117,8 @@ from transformers import (
107
  pipeline
108
  )
109
 
110
- model_id = "somosnlp/gemma-7b-it-legal-refugee-v0.1.1"
111
- tokenizer_id = "somosnlp/gemma-7b-it-legal-refugee-v0.1.1"
112
 
113
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
114
  # Cargamos el modelo en 4 bits para agilizar la inferencia
@@ -143,4 +153,189 @@ input = "b) Hechos que motivan la incoación del procedimiento sucintamente expu
143
 
144
  response = test_inference(instruction, input, 0.3)
145
  print(f"Response:\n{response}")
146
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - sft
9
  - generated_from_trainer
10
  base_model: google/gemma-7b
11
+ datasets:
12
+ - somosnlp/instruct-legal-refugiados-es
13
  ---
14
 
15
+ <!--
16
+ Esta plantilla de Model Card es una adaptación de la de Hugging Face: https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md
17
 
18
+ ¿Cómo utilizar esta plantilla? Copia el contenido en el README.md del repo de tu modelo en el Hub de Hugging Face y rellena cada sección.
19
 
20
+ Para más información sobre cómo rellenar cada sección ver las docs: https://huggingface.co/docs/hub/model-cards
21
+ -->
22
 
23
+ # Model Card for gemma-7b-it-legal-refugiados-es
24
 
25
+ <!-- Suele haber un nombre corto ("pretty name") para las URLs, tablas y demás y uno largo más descriptivo. Para crear el pretty name podéis utilizar acrónimos. -->
26
+
27
+ <!-- Resumen del modelo y motivación del proyecto (inc. los ODS relacionados). Esta sección es como el abstract. También se puede incluir aquí el logo del proyecto. -->
28
+
29
+ <!-- Si queréis incluir una versión de la Dataset Card en español, enlazarla aquí al principio (e.g. `README_es.md`).-->
30
+
31
+ Spain is the third country with the highest number of asylum applications, receiving each year approximately more than 100,000 applications, and the third with the lowest number of approvals within the EU.
32
+
33
+ The main objective of this project is to facilitate the tasks of NGOs in this field and other institutions and help them to obtain answers to questions (QA) related to refugee legislation in Spanish. With its refined understanding of the nuances and complexities of this legal field.
34
 
35
+ The objective of this model is to facilitate question answering (QA) tasks pertaining to Spanish refugee legislation. With its refined understanding of the nuances and intricacies of this legal domain
36
+
37
+ ## Model Details
38
 
39
  ### Model Description
40
 
41
+ <!-- Resumen del modelo. -->
42
+ The objective of this model is to facilitate question answering (QA) tasks pertaining to Spanish refugee legislation. With its refined understanding of the nuances and intricacies of this legal domain.
43
 
44
+ This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the dataset [AsistenciaRefugiados](https://huggingface.co/datasets/somosnlp/instruct-legal-refugiados-es).
45
 
46
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub to allow public access.
47
 
 
 
48
 
49
+ - **Developed by:** <!-- Nombre de los miembros del equipo -->
50
+ [Alvaro Hidalgo](https://huggingface.co/hacendado)
51
+ [Eduardo Muñoz](https://huggingface.co/edumunozsala)
52
+ [Teresa Martin](https://huggingface.co/narhim)
53
 
54
+ - **Funded by:** SomosNLP, HuggingFace <!-- Si contasteis con apoyo de otra entidad (e.g. vuestra universidad), añadidla aquí -->
55
+ - **Model type:** Language model, instruction tuned
56
+ - **Language(s):** es-ES, es-MX, es-VE <!-- Enumerar las lenguas en las que se ha entrenado el modelo, especificando el país de origen. Utilizar códigos ISO. Por ejemplo: Spanish (`es-CL`, `es-ES`, `es-MX`), Catalan (`ca`), Quechua (`qu`). -->
57
+ - **License:** apache-2.0 <!-- Elegid una licencia lo más permisiva posible teniendo en cuenta la licencia del model pre-entrenado y los datasets utilizados -->
58
+ - **Fine-tuned from model:** [google/gemma-7b](https://huggingface.co/google/ <!-- Enlace al modelo pre-entrenado que habéis utilizado como base -->
59
+ - **Dataset used:** [AsistenciaRefugiados](https://huggingface.co/datasets/somosnlp/instruct-legal-refugiados-es) <!-- Enlace al dataset utilizado para el ajuste -->
60
 
61
+ ### Model Sources
62
 
63
+ - **Repository:** Notebook in [This repo](https://huggingface.co/somosnlp/gemma-7b-it-legal-refugee-v0.1.1) <!-- Enlace al `main` del repo donde tengáis los scripts, i.e.: o del mismo repo del modelo en HuggingFace o a GitHub. -->
64
+ - **Demo:** [Demo Space](https://huggingface.co/spaces/somosnlp/QA-legal-refugiados) <!-- Enlace a la demo -->
65
+ - **Video presentation:** [Youtube Video](https://www.youtube.com/watch?v=1OqHDE5LKMI&list=PLTA-KAy8nxaASMwEUWkkTfMaDxWBxn-8J&index=3) <!-- Enlace a vuestro vídeo de presentación en YouTube (están todos subidos aquí: https://www.youtube.com/playlist?list=PLTA-KAy8nxaASMwEUWkkTfMaDxWBxn-8J) -->
66
 
67
+ ### Model Family
68
 
69
+ <!-- Si habéis entrenado varios modelos similares podéis enumerarlos aquí. -->
70
+ This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b).
71
 
72
+ ## Uses
73
 
74
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
75
 
76
+ ### Direct Use
77
 
78
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
79
 
80
+ The primary objective of this model is to facilitate question answering (QA) tasks pertaining to Spanish refugee legislation. With its refined understanding of the nuances and intricacies of this legal domain.
81
 
82
+ ### Downstream Use
 
83
 
84
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
85
 
86
+ Intented to be use in question-answering with a context and text generation.
 
 
 
 
 
 
 
 
87
 
88
+ ### Out-of-Scope Use
89
 
90
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
91
 
92
+ Misuse includes any application that promotes unethical practices, misinterprets refugee law, or uses the model for malicious purposes. The model is not designed to replace professional legal advice.
93
 
94
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
95
 
96
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
97
 
98
+ The model, while powerful, has limitations inherent to AI, including biases present in the training data. It may not cover all nuances of refugee regulations or adapt to changes in law without updates.
99
+
100
+ ### Recommendations
101
+
102
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
103
+
104
+ <!-- Example: Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. -->
105
 
106
+ ## How to Get Started with the Model
107
 
108
+ Use the code below to get started with the model.
109
 
110
  ```python
111
  import torch
 
117
  pipeline
118
  )
119
 
120
+ model_id = "somosnlp/gemma-7b-it-legal-refugiados-es"
121
+ tokenizer_id = "somosnlp/gemma-7b-it-legal-refugiados-es"
122
 
123
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
124
  # Cargamos el modelo en 4 bits para agilizar la inferencia
 
153
 
154
  response = test_inference(instruction, input, 0.3)
155
  print(f"Response:\n{response}")
156
+ ```
157
+ ## Training Details
158
+
159
+ ### Training Data
160
+
161
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
162
+ The dataset used was [instruct-legal-refugiados-es](https://huggingface.co/datasets/somosnlp/instruct-legal-refugiados-es) but we adapted the dataset to a ChatML format, described in the next section.
163
+
164
+ ### Training Procedure
165
+
166
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
167
+
168
+ <!-- Detallar la técnica de entrenamiento utilizada y enlazar los scripts/notebooks. -->
169
+ The training was done using RTX 4090 from Vast.ai with PeRF and Lora
170
+
171
+ #### Preprocessing
172
+
173
+ We wanted to make a conversation model so we investigated the base model prompt in order to make conversational base on [chatml format](https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md#working-with-chat-markup-language-chatml)
174
+
175
+ we identified the special tokens so the model could understand the different roles in the conversation
176
+
177
+ Example
178
+ ```
179
+ <bos><|im_start|>system
180
+ You are Gemma.<|im_end|>
181
+ <|im_start|>user
182
+ Hello, how are you?<|im_end|>
183
+ <|im_start|>assistant
184
+ I'm doing great. How can I help you today?<|im_end|>\n<eos>
185
+ ```
186
+ So we used [Phil Schmid's gemma chatml tokenizer](https://huggingface.co/philschmid/gemma-tokenizer-chatml) to adapt our dataset for training
187
+
188
+ #### Training Hyperparameters
189
+
190
+ <!-- Enumerar los valores de los hiperparámetros de entrenamiento. -->
191
+ The following hyperparameters were used during training:
192
+ - learning_rate: 5e-05
193
+ - train_batch_size: 2
194
+ - eval_batch_size: 8
195
+ - seed: 66
196
+ - gradient_accumulation_steps: 2
197
+ - total_train_batch_size: 4
198
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
199
+ - lr_scheduler_type: constant
200
+ - lr_scheduler_warmup_ratio: 0.03
201
+ - num_epochs: 3
202
+
203
+
204
+ - **Training regime:** <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
205
+
206
+ ## Evaluation
207
+
208
+ <!-- This section describes the evaluation protocols and provides the results. -->
209
+
210
+ ### Testing Data, Factors & Metrics
211
+
212
+ #### Testing Data
213
+
214
+ <!-- This should link to a Dataset Card. -->
215
+
216
+ [More Information Needed]
217
+
218
+ #### Factors
219
+
220
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
221
+
222
+ [More Information Needed]
223
+
224
+ #### Metrics
225
+
226
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
227
+
228
+ [More Information Needed]
229
+
230
+ ### Results
231
+
232
+ <!-- Enlazar aquí los scripts/notebooks de evaluación y especificar los resultados. -->
233
+
234
+ [More Information Needed]
235
+
236
+ ## Environmental Impact
237
+
238
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly. -->
239
+
240
+ <!-- Rellenar la información de la lista y calcular las emisiones con la página mencionada. -->
241
+
242
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
243
+
244
+ - **Hardware Type**: 1 X RTX4090
245
+ - **Hours used**: 4
246
+ - **Cloud Provider**: Vast.ai
247
+ - **Compute Region**: West Europe
248
+ - **Carbon Emitted**: 350W x 4h = 1.4 kWh x 0.57 kg eq. CO2/kWh = 0.8 kg eq. CO2
249
+
250
+ ## Technical Specifications
251
+
252
+ <!-- Esta sección es opcional porque seguramente ya habéis mencionado estos detalles más arriba, igualmente está bien incluirlos aquí de nuevo como bullet points a modo de resumen. -->
253
+
254
+ ### Model Architecture and Objective
255
+
256
+ The base model is [google/gemma-7b](https://huggingface.co/google/gemma-7b) finetuned in 4-bit.
257
+
258
+ ### Compute Infrastructure
259
+
260
+ #### Hardware
261
+
262
+ <!-- Indicar el hardware utilizado, podéis agradecer aquí a quien lo patrocinó. -->
263
+ 1 x RTX4090 GPU by Vast.ai.
264
+
265
+ #### Software
266
+
267
+ <!-- Enumerar las librerías utilizadas (e.g. transformers, distilabel). -->
268
+
269
+ Libraries:
270
+ - transformers
271
+ - bitsandbytes
272
+ - accelerate
273
+ - xformers
274
+ - trl
275
+ - peft
276
+ - wandb
277
+
278
+ ## License
279
+
280
+ <!-- Indicar bajo qué licencia se libera el modelo explicando, si no es apache 2.0, a qué se debe la licencia más restrictiva (i.e. herencia de las licencias del modelo pre-entrenado o de los datos utilizados). -->
281
+
282
+ This model is under the license of the Gemma models by Google.
283
+ Link to consent: https://www.kaggle.com/models/google/gemma/license/consent
284
+
285
+
286
+ ## Citation
287
+
288
+ **BibTeX:**
289
+
290
+ [More Information Needed]
291
+
292
+ <!--
293
+
294
+ Aquí tenéis un ejemplo de cita de un dataset que podéis adaptar:
295
+
296
+ ```
297
+ @software{benallal2024cosmopedia,
298
+ author = {Ben Allal, Loubna and Lozhkov, Anton and Penedo, Guilherme and Wolf, Thomas and von Werra, Leandro},
299
+ title = {Cosmopedia},
300
+ month = February,
301
+ year = 2024,
302
+ url = {https://huggingface.co/datasets/HuggingFaceTB/cosmopedia}
303
+ }
304
+ ```
305
+
306
+ - benallal2024cosmopedia -> nombre + año + nombre del modelo
307
+ - author: lista de miembros del equipo
308
+ - title: nombre del modelo
309
+ - year: año
310
+ - url: enlace al modelo
311
+
312
+ -->
313
+ ```
314
+ @software{somosnlp2024asistenciarefugiados,
315
+ author = {Alvaro Hidalgo, Eduardo Muñoz, Teresa Martín},
316
+ title = {gemma-7b-it-legal-refugiados-es},
317
+ month = April,
318
+ year = 2024,
319
+ url = {somosnlp/gemma-7b-it-legal-refugee-v0.1.1}
320
+ }
321
+ ```
322
+ ## More Information
323
+
324
+ <!-- Indicar aquí que el marco en el que se desarrolló el proyecto, en esta sección podéis incluir agradecimientos y más información sobre los miembros del equipo. Podéis adaptar el ejemplo a vuestro gusto. -->
325
+
326
+ This project was developed during the [Hackathon #Somos600M](https://somosnlp.org/hackathon) organized by SomosNLP. The model was trained using GPUs sponsored by HuggingFace.
327
+
328
+ **Team:**
329
+
330
+ [Alvaro Hidalgo](https://huggingface.co/hacendado)
331
+ [Eduardo Muñoz](https://huggingface.co/edumunozsala)
332
+ [Teresa Martin](https://huggingface.co/narhim)
333
+
334
+ <!--
335
+ - [Name 1](Link to Hugging Face profile)
336
+ - [Name 2](Link to Hugging Face profile)
337
+ -->
338
+
339
+ ## Contact [optional]
340
+
341
+ <!-- Email de contacto para´posibles preguntas sobre el modelo. -->