--- base_model: Nexusflow/Starling-LM-7B-beta license: apache-2.0 datasets: - berkeley-nest/Nectar language: - en library_name: transformers tags: - reward model - RLHF - RLAIF - quantized - 4-bit - AWQ - text-generation - autotrain_compatible - endpoints_compatible - chatml model_creator: Nexusflow model_name: Starling-LM-7B-beta model_type: mistral pipeline_tag: text-generation inference: false prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: Suparious --- # Nexusflow/Starling-LM-7B-beta AWQ - Model creator: [Nexusflow](https://huggingface.co/Nexusflow) - Original model: [Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) ![image/png](Starling-Beta-7B.png) ## Model Summary - **Developed by:** Banghua Zhu * , Evan Frick * , Tianhao Wu * , Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and Jiantao Jiao. - **Model type:** Language Model finetuned with RLHF / RLAIF - **License:** Apache-2.0 license under the condition that the model is not used to compete with OpenAI - **Finetuned from model:** [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) (based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)) We introduce Starling-LM-7B-beta, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). Starling-LM-7B-beta is trained from [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) with our new reward model [Nexusflow/Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B) and policy optimization method [Fine-Tuning Language Models from Human Preferences (PPO)](https://arxiv.org/abs/1909.08593). Harnessing the power of our ranking dataset, [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), our upgraded reward model, [Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B), and our new reward training and policy tuning pipeline, Starling-LM-7B-beta scores an improved 8.12 in MT Bench with GPT-4 as a judge. Stay tuned for our forthcoming code and paper, which will provide more details on the whole process. ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/Starling-LM-7B-beta-AWQ" system_message = "You are Starling, incarnated as a powerful AI." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Prompt template: ChatML ```plaintext <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ```