File size: 6,317 Bytes
dbf903b
d89288b
 
 
 
 
6ab06e4
d89288b
6ab06e4
 
 
 
 
d89288b
6ab06e4
 
d89288b
 
 
 
6ab06e4
d89288b
 
6ab06e4
 
 
d89288b
 
6ab06e4
d89288b
 
6ab06e4
 
d89288b
 
 
6ab06e4
d89288b
 
6ab06e4
 
 
d89288b
 
6ab06e4
d89288b
 
6ab06e4
 
d89288b
 
 
 
6ab06e4
d89288b
 
6ab06e4
 
 
d89288b
 
6ab06e4
d89288b
 
6ab06e4
 
d89288b
 
 
 
6ab06e4
 
 
 
 
d89288b
 
6ab06e4
d89288b
 
6ab06e4
 
d89288b
 
 
 
6ab06e4
d89288b
 
6ab06e4
 
 
d89288b
 
6ab06e4
d89288b
 
6ab06e4
 
d89288b
 
 
 
6ab06e4
d89288b
 
6ab06e4
 
 
d89288b
 
 
 
6ab06e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89288b
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf903b
6ab06e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
base_model: macadeliccc/OmniCorso-7B
inference: false
language:
- en
library_name: transformers
license: cc
merged_models:
- macadeliccc/MBX-7B-v3-DPO
- mlabonne/OmniBeagle-7B
model-index:
- name: OmniCorso-7B
  results:
  - dataset:
      args:
        num_few_shot: 25
      config: ARC-Challenge
      name: AI2 Reasoning Challenge (25-Shot)
      split: test
      type: ai2_arc
    metrics:
    - name: normalized accuracy
      type: acc_norm
      value: 72.7
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
  - dataset:
      args:
        num_few_shot: 10
      name: HellaSwag (10-Shot)
      split: validation
      type: hellaswag
    metrics:
    - name: normalized accuracy
      type: acc_norm
      value: 88.7
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
  - dataset:
      args:
        num_few_shot: 5
      config: all
      name: MMLU (5-Shot)
      split: test
      type: cais/mmlu
    metrics:
    - name: accuracy
      type: acc
      value: 64.91
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
  - dataset:
      args:
        num_few_shot: 0
      config: multiple_choice
      name: TruthfulQA (0-shot)
      split: validation
      type: truthful_qa
    metrics:
    - type: mc2
      value: 73.43
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
  - dataset:
      args:
        num_few_shot: 5
      config: winogrande_xl
      name: Winogrande (5-shot)
      split: validation
      type: winogrande
    metrics:
    - name: accuracy
      type: acc
      value: 83.74
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
  - dataset:
      args:
        num_few_shot: 5
      config: main
      name: GSM8k (5-shot)
      split: test
      type: gsm8k
    metrics:
    - name: accuracy
      type: acc
      value: 70.96
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
    task:
      name: Text Generation
      type: text-generation
model_creator: macadeliccc
model_name: OmniCorso-7B
model_type: mistral
pipeline_tag: text-generation
prompt_template: '<|im_start|>system

  {system_message}<|im_end|>

  <|im_start|>user

  {prompt}<|im_end|>

  <|im_start|>assistant

  '
quantized_by: Suparious
tags:
- mergekit
- merge
- quantized
- 4-bit
- AWQ
- pytorch
- mistral
- instruct
- text-generation
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
---
# macadeliccc/OmniCorso-7B AWQ

- Model creator: [macadeliccc](https://huggingface.co/macadeliccc)
- Original model: [OmniCorso-7B](https://huggingface.co/macadeliccc/OmniCorso-7B)

![image/webp](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6455cc8d679315e4ef16fbec%2FPaG7ByWy1qnh_tcSuh35U.webp%3C%2Fspan%3E)

## Model Summary

The following models were included in the merge:
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B)

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/OmniCorso-7B-AWQ"
system_message = "You are Newton, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

## Prompt template: ChatML

```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```