--- library_name: transformers license: apache-2.0 base_model: Falconsai/medical_summarization tags: - generated_from_trainer metrics: - rouge model-index: - name: medical_summarization-finetuned-Medical-summary results: [] --- # medical_summarization-finetuned-Medical-summary This model is a fine-tuned version of [Falconsai/medical_summarization](https://huggingface.co/Falconsai/medical_summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2124 - Rouge1: 22.5658 - Rouge2: 14.2244 - Rougel: 20.2774 - Rougelsum: 21.7581 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3725 | 1.0 | 579 | 1.2124 | 22.5658 | 14.2244 | 20.2774 | 21.7581 | 19.0 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3