File size: 1,724 Bytes
25dc2a0
 
6c9f006
 
 
 
 
 
59559f8
6c9f006
 
 
 
 
59559f8
6c9f006
 
 
 
 
59559f8
6c9f006
59559f8
25dc2a0
6c9f006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: xtreme
      type: xtreme
      args: PAN-X.fr
    metrics:
    - type: f1
      value: 0.8095396931287525
      name: F1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-panx-fr

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3160
- F1: 0.8095

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.793         | 1.0   | 96   | 0.3923          | 0.7447 |
| 0.3258        | 2.0   | 192  | 0.3344          | 0.7790 |
| 0.2251        | 3.0   | 288  | 0.3160          | 0.8095 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.13.1+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3