--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: mistral-7B-v0.1-relufication-stage-1-on-slim-orca results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: AutoModelForCausalLM tokenizer_config: Open-Orca/Mistral-7B-OpenOrca tokenizer_type: AutoTokenizer tokenizer_use_fast: false resize_token_embeddings_to_32x: false flash_attention: true xformers_attention: load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-train type: chat_template field_messages: messages test_datasets: - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-test type: chat_template field_messages: messages split: train hf_use_auth_token: true dataset_prepared_path: pretokenized/slim-orca output_dir: ./exp_output_artifacts sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false # eval_causal_lm_metrics: ["perplexity"] wandb_project: "axolotl_mistral_sft" wandb_entity: wandb_watch: wandb_name: "mistral-7B-v0.1-relufication-stage-1-on-slim-orca" wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 16 eval_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.000005 warmup_ratio: 0.03 weight_decay: 0.0 adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 0.000001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false hub_model_id: "skymizer/mistral-7B-v0.1-relufication-stage-1-on-slim-orca" save_strategy: "steps" save_steps: 50 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 eval_steps: 50 eval_table_size: eval_max_new_tokens: 2048 debug: deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: seed: 42 ```

# mistral-7B-v0.1-relufication-stage-1-on-slim-orca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 11 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.6459 | 0.0026 | 1 | 10.7631 | | 1.075 | 0.1277 | 50 | 1.0591 | | 0.7996 | 0.2554 | 100 | 0.7829 | | 0.7357 | 0.3831 | 150 | 0.7247 | | 0.7094 | 0.5109 | 200 | 0.6953 | | 0.6835 | 0.6386 | 250 | 0.6727 | | 0.691 | 0.7663 | 300 | 0.6603 | | 0.6723 | 0.8940 | 350 | 0.6542 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3