File size: 4,061 Bytes
65c6142 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mistral-7B-v0.1-relufication-stage-1-on-slim-orca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_config: Open-Orca/Mistral-7B-OpenOrca
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-train
type: chat_template
field_messages: messages
test_datasets:
- path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-test
type: chat_template
field_messages: messages
split: train
hf_use_auth_token: true
dataset_prepared_path: pretokenized/slim-orca
output_dir: ./exp_output_artifacts
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-relufication-stage-1-on-slim-orca"
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
warmup_ratio: 0.03
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/mistral-7B-v0.1-relufication-stage-1-on-slim-orca"
save_strategy: "steps"
save_steps: 50
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
eval_steps: 50
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
```
</details><br>
# mistral-7B-v0.1-relufication-stage-1-on-slim-orca
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 11
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.6459 | 0.0026 | 1 | 10.7631 |
| 1.075 | 0.1277 | 50 | 1.0591 |
| 0.7996 | 0.2554 | 100 | 0.7829 |
| 0.7357 | 0.3831 | 150 | 0.7247 |
| 0.7094 | 0.5109 | 200 | 0.6953 |
| 0.6835 | 0.6386 | 250 | 0.6727 |
| 0.691 | 0.7663 | 300 | 0.6603 |
| 0.6723 | 0.8940 | 350 | 0.6542 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|