File size: 10,644 Bytes
5840ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-sst-2-16-87
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# best_model-sst-2-16-87

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6392
- Accuracy: 0.875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 1    | 0.5816          | 0.8438   |
| No log        | 2.0   | 2    | 0.5813          | 0.8438   |
| No log        | 3.0   | 3    | 0.5807          | 0.8438   |
| No log        | 4.0   | 4    | 0.5798          | 0.8438   |
| No log        | 5.0   | 5    | 0.5786          | 0.8438   |
| No log        | 6.0   | 6    | 0.5770          | 0.8438   |
| No log        | 7.0   | 7    | 0.5750          | 0.8438   |
| No log        | 8.0   | 8    | 0.5726          | 0.8438   |
| No log        | 9.0   | 9    | 0.5701          | 0.8438   |
| 0.4546        | 10.0  | 10   | 0.5672          | 0.8438   |
| 0.4546        | 11.0  | 11   | 0.5641          | 0.8438   |
| 0.4546        | 12.0  | 12   | 0.5614          | 0.8438   |
| 0.4546        | 13.0  | 13   | 0.5586          | 0.8438   |
| 0.4546        | 14.0  | 14   | 0.5560          | 0.8438   |
| 0.4546        | 15.0  | 15   | 0.5530          | 0.8438   |
| 0.4546        | 16.0  | 16   | 0.5501          | 0.8438   |
| 0.4546        | 17.0  | 17   | 0.5470          | 0.8438   |
| 0.4546        | 18.0  | 18   | 0.5438          | 0.8438   |
| 0.4546        | 19.0  | 19   | 0.5407          | 0.8438   |
| 0.4413        | 20.0  | 20   | 0.5369          | 0.8438   |
| 0.4413        | 21.0  | 21   | 0.5325          | 0.8438   |
| 0.4413        | 22.0  | 22   | 0.5280          | 0.8438   |
| 0.4413        | 23.0  | 23   | 0.5230          | 0.8438   |
| 0.4413        | 24.0  | 24   | 0.5180          | 0.8438   |
| 0.4413        | 25.0  | 25   | 0.5132          | 0.8438   |
| 0.4413        | 26.0  | 26   | 0.5088          | 0.8438   |
| 0.4413        | 27.0  | 27   | 0.5049          | 0.8438   |
| 0.4413        | 28.0  | 28   | 0.5014          | 0.8438   |
| 0.4413        | 29.0  | 29   | 0.4985          | 0.8438   |
| 0.3899        | 30.0  | 30   | 0.4964          | 0.8438   |
| 0.3899        | 31.0  | 31   | 0.4951          | 0.8438   |
| 0.3899        | 32.0  | 32   | 0.4937          | 0.8438   |
| 0.3899        | 33.0  | 33   | 0.4919          | 0.8438   |
| 0.3899        | 34.0  | 34   | 0.4902          | 0.8438   |
| 0.3899        | 35.0  | 35   | 0.4884          | 0.8438   |
| 0.3899        | 36.0  | 36   | 0.4870          | 0.8438   |
| 0.3899        | 37.0  | 37   | 0.4854          | 0.8438   |
| 0.3899        | 38.0  | 38   | 0.4844          | 0.8438   |
| 0.3899        | 39.0  | 39   | 0.4832          | 0.875    |
| 0.3672        | 40.0  | 40   | 0.4821          | 0.875    |
| 0.3672        | 41.0  | 41   | 0.4817          | 0.875    |
| 0.3672        | 42.0  | 42   | 0.4817          | 0.875    |
| 0.3672        | 43.0  | 43   | 0.4820          | 0.875    |
| 0.3672        | 44.0  | 44   | 0.4830          | 0.875    |
| 0.3672        | 45.0  | 45   | 0.4838          | 0.875    |
| 0.3672        | 46.0  | 46   | 0.4848          | 0.875    |
| 0.3672        | 47.0  | 47   | 0.4855          | 0.875    |
| 0.3672        | 48.0  | 48   | 0.4854          | 0.875    |
| 0.3672        | 49.0  | 49   | 0.4860          | 0.875    |
| 0.2765        | 50.0  | 50   | 0.4872          | 0.875    |
| 0.2765        | 51.0  | 51   | 0.4878          | 0.875    |
| 0.2765        | 52.0  | 52   | 0.4892          | 0.875    |
| 0.2765        | 53.0  | 53   | 0.4913          | 0.875    |
| 0.2765        | 54.0  | 54   | 0.4942          | 0.8438   |
| 0.2765        | 55.0  | 55   | 0.4977          | 0.8438   |
| 0.2765        | 56.0  | 56   | 0.5017          | 0.8438   |
| 0.2765        | 57.0  | 57   | 0.5074          | 0.8438   |
| 0.2765        | 58.0  | 58   | 0.5148          | 0.8438   |
| 0.2765        | 59.0  | 59   | 0.5211          | 0.8438   |
| 0.2106        | 60.0  | 60   | 0.5286          | 0.8438   |
| 0.2106        | 61.0  | 61   | 0.5361          | 0.8438   |
| 0.2106        | 62.0  | 62   | 0.5429          | 0.8438   |
| 0.2106        | 63.0  | 63   | 0.5497          | 0.8438   |
| 0.2106        | 64.0  | 64   | 0.5551          | 0.8438   |
| 0.2106        | 65.0  | 65   | 0.5569          | 0.8438   |
| 0.2106        | 66.0  | 66   | 0.5556          | 0.8438   |
| 0.2106        | 67.0  | 67   | 0.5522          | 0.8438   |
| 0.2106        | 68.0  | 68   | 0.5465          | 0.8438   |
| 0.2106        | 69.0  | 69   | 0.5400          | 0.8438   |
| 0.1587        | 70.0  | 70   | 0.5359          | 0.8438   |
| 0.1587        | 71.0  | 71   | 0.5311          | 0.8438   |
| 0.1587        | 72.0  | 72   | 0.5252          | 0.8438   |
| 0.1587        | 73.0  | 73   | 0.5217          | 0.8438   |
| 0.1587        | 74.0  | 74   | 0.5192          | 0.8438   |
| 0.1587        | 75.0  | 75   | 0.5158          | 0.8438   |
| 0.1587        | 76.0  | 76   | 0.5128          | 0.8438   |
| 0.1587        | 77.0  | 77   | 0.5113          | 0.8438   |
| 0.1587        | 78.0  | 78   | 0.5105          | 0.8438   |
| 0.1587        | 79.0  | 79   | 0.5091          | 0.8438   |
| 0.122         | 80.0  | 80   | 0.5090          | 0.8438   |
| 0.122         | 81.0  | 81   | 0.5100          | 0.8438   |
| 0.122         | 82.0  | 82   | 0.5126          | 0.8438   |
| 0.122         | 83.0  | 83   | 0.5167          | 0.8438   |
| 0.122         | 84.0  | 84   | 0.5215          | 0.8438   |
| 0.122         | 85.0  | 85   | 0.5274          | 0.8438   |
| 0.122         | 86.0  | 86   | 0.5351          | 0.8438   |
| 0.122         | 87.0  | 87   | 0.5439          | 0.8438   |
| 0.122         | 88.0  | 88   | 0.5547          | 0.8438   |
| 0.122         | 89.0  | 89   | 0.5658          | 0.8438   |
| 0.0738        | 90.0  | 90   | 0.5778          | 0.8438   |
| 0.0738        | 91.0  | 91   | 0.5872          | 0.8438   |
| 0.0738        | 92.0  | 92   | 0.5963          | 0.8438   |
| 0.0738        | 93.0  | 93   | 0.6027          | 0.8438   |
| 0.0738        | 94.0  | 94   | 0.6059          | 0.8438   |
| 0.0738        | 95.0  | 95   | 0.6070          | 0.8438   |
| 0.0738        | 96.0  | 96   | 0.6052          | 0.8438   |
| 0.0738        | 97.0  | 97   | 0.6020          | 0.8438   |
| 0.0738        | 98.0  | 98   | 0.5950          | 0.8438   |
| 0.0738        | 99.0  | 99   | 0.5870          | 0.8438   |
| 0.0328        | 100.0 | 100  | 0.5788          | 0.8438   |
| 0.0328        | 101.0 | 101  | 0.5706          | 0.8438   |
| 0.0328        | 102.0 | 102  | 0.5638          | 0.8438   |
| 0.0328        | 103.0 | 103  | 0.5578          | 0.8438   |
| 0.0328        | 104.0 | 104  | 0.5530          | 0.8438   |
| 0.0328        | 105.0 | 105  | 0.5491          | 0.875    |
| 0.0328        | 106.0 | 106  | 0.5465          | 0.875    |
| 0.0328        | 107.0 | 107  | 0.5457          | 0.875    |
| 0.0328        | 108.0 | 108  | 0.5456          | 0.875    |
| 0.0328        | 109.0 | 109  | 0.5462          | 0.875    |
| 0.0221        | 110.0 | 110  | 0.5473          | 0.875    |
| 0.0221        | 111.0 | 111  | 0.5486          | 0.875    |
| 0.0221        | 112.0 | 112  | 0.5500          | 0.875    |
| 0.0221        | 113.0 | 113  | 0.5521          | 0.875    |
| 0.0221        | 114.0 | 114  | 0.5543          | 0.875    |
| 0.0221        | 115.0 | 115  | 0.5564          | 0.875    |
| 0.0221        | 116.0 | 116  | 0.5589          | 0.875    |
| 0.0221        | 117.0 | 117  | 0.5613          | 0.875    |
| 0.0221        | 118.0 | 118  | 0.5637          | 0.875    |
| 0.0221        | 119.0 | 119  | 0.5660          | 0.875    |
| 0.017         | 120.0 | 120  | 0.5682          | 0.875    |
| 0.017         | 121.0 | 121  | 0.5704          | 0.875    |
| 0.017         | 122.0 | 122  | 0.5727          | 0.875    |
| 0.017         | 123.0 | 123  | 0.5748          | 0.875    |
| 0.017         | 124.0 | 124  | 0.5772          | 0.875    |
| 0.017         | 125.0 | 125  | 0.5796          | 0.875    |
| 0.017         | 126.0 | 126  | 0.5820          | 0.875    |
| 0.017         | 127.0 | 127  | 0.5847          | 0.875    |
| 0.017         | 128.0 | 128  | 0.5874          | 0.875    |
| 0.017         | 129.0 | 129  | 0.5900          | 0.875    |
| 0.0129        | 130.0 | 130  | 0.5926          | 0.875    |
| 0.0129        | 131.0 | 131  | 0.5951          | 0.875    |
| 0.0129        | 132.0 | 132  | 0.5976          | 0.875    |
| 0.0129        | 133.0 | 133  | 0.6001          | 0.875    |
| 0.0129        | 134.0 | 134  | 0.6027          | 0.875    |
| 0.0129        | 135.0 | 135  | 0.6051          | 0.875    |
| 0.0129        | 136.0 | 136  | 0.6076          | 0.875    |
| 0.0129        | 137.0 | 137  | 0.6099          | 0.875    |
| 0.0129        | 138.0 | 138  | 0.6123          | 0.875    |
| 0.0129        | 139.0 | 139  | 0.6146          | 0.875    |
| 0.0103        | 140.0 | 140  | 0.6169          | 0.875    |
| 0.0103        | 141.0 | 141  | 0.6192          | 0.875    |
| 0.0103        | 142.0 | 142  | 0.6216          | 0.875    |
| 0.0103        | 143.0 | 143  | 0.6239          | 0.875    |
| 0.0103        | 144.0 | 144  | 0.6261          | 0.875    |
| 0.0103        | 145.0 | 145  | 0.6284          | 0.875    |
| 0.0103        | 146.0 | 146  | 0.6306          | 0.875    |
| 0.0103        | 147.0 | 147  | 0.6328          | 0.875    |
| 0.0103        | 148.0 | 148  | 0.6350          | 0.875    |
| 0.0103        | 149.0 | 149  | 0.6371          | 0.875    |
| 0.0084        | 150.0 | 150  | 0.6392          | 0.875    |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3