--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: gemma-7b-borpo results: [] --- # gemma-7b-borpo This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 1.5984 - Rewards/chosen: -0.0575 - Rewards/rejected: -0.0699 - Rewards/accuracies: 0.5899 - Rewards/margins: 0.0124 - Logps/rejected: -1.3977 - Logps/chosen: -1.1506 - Logits/rejected: 270.9628 - Logits/chosen: 299.8625 - Nll Loss: 1.5312 - Log Odds Ratio: -0.6761 - Log Odds Chosen: 0.3679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.4516 | 0.9968 | 157 | 1.4765 | -0.0513 | -0.0577 | 0.5468 | 0.0064 | -1.1547 | -1.0260 | 293.8872 | 321.9495 | 1.4282 | -0.6924 | 0.1911 | | 1.0587 | 2.0 | 315 | 1.4250 | -0.0502 | -0.0595 | 0.5468 | 0.0093 | -1.1904 | -1.0035 | 296.0850 | 323.6012 | 1.3729 | -0.6901 | 0.2723 | | 0.5897 | 2.9905 | 471 | 1.5984 | -0.0575 | -0.0699 | 0.5899 | 0.0124 | -1.3977 | -1.1506 | 270.9628 | 299.8625 | 1.5312 | -0.6761 | 0.3679 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1