luotuo-bert / models.py
ubuntu
first version
bbd6d64
raw
history blame
21.1 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
# from simcse.modeling_glm import GLMModel, GLMPreTrainedModel
# import simcse.readEmbeddings
# import simcse.mse_loss
import transformers
from transformers import RobertaTokenizer, AutoModel, PreTrainedModel
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel, RobertaLMHead
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, BertLMPredictionHead
from transformers.activations import gelu
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutputWithPoolingAndCrossAttentions
glm_model = None
def init_glm(path):
global glm_model
glm_model = AutoModel.from_pretrained(path, trust_remote_code=True).to("cuda:0")
for param in glm_model.parameters():
param.requires_grad = False
class MLPLayer(nn.Module):
"""
Head for getting sentence representations over RoBERTa/BERT's CLS representation.
"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
# 1536
self.fc = nn.Linear(config.hidden_size, 1536)
self.activation = nn.Tanh()
def forward(self, features, **kwargs):
x = self.dense(features)
x = self.fc(x)
x = self.activation(x)
return x
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
class Pooler(nn.Module):
"""
Parameter-free poolers to get the sentence embedding
'cls': [CLS] representation with BERT/RoBERTa's MLP pooler.
'cls_before_pooler': [CLS] representation without the original MLP pooler.
'avg': average of the last layers' hidden states at each token.
'avg_top2': average of the last two layers.
'avg_first_last': average of the first and the last layers.
"""
def __init__(self, pooler_type):
super().__init__()
self.pooler_type = pooler_type
assert self.pooler_type in ["cls", "cls_before_pooler", "avg", "avg_top2",
"avg_first_last"], "unrecognized pooling type %s" % self.pooler_type
def forward(self, attention_mask, outputs):
last_hidden = outputs.last_hidden_state
# pooler_output = outputs.pooler_output
hidden_states = outputs.hidden_states
if self.pooler_type in ['cls_before_pooler', 'cls']:
return last_hidden[:, 0]
elif self.pooler_type == "avg":
return ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1))
elif self.pooler_type == "avg_first_last":
first_hidden = hidden_states[1]
last_hidden = hidden_states[-1]
pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(
1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
elif self.pooler_type == "avg_top2":
second_last_hidden = hidden_states[-2]
last_hidden = hidden_states[-1]
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(
1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
else:
raise NotImplementedError
def cl_init(cls, config):
"""
Contrastive learning class init function.
"""
cls.pooler_type = cls.model_args.pooler_type
cls.pooler = Pooler(cls.model_args.pooler_type)
if cls.model_args.pooler_type == "cls":
cls.mlp = MLPLayer(config)
cls.sim = Similarity(temp=cls.model_args.temp)
cls.init_weights()
def cl_forward(cls,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
mlm_input_ids=None,
mlm_labels=None,
):
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
ori_input_ids = input_ids
batch_size = input_ids.size(0)
# Number of sentences in one instance
# 2: pair instance; 3: pair instance with a hard negative
num_sent = input_ids.size(1)
mlm_outputs = None
# Flatten input for encoding
input_ids = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
attention_mask = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
if token_type_ids is not None:
token_type_ids = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
if inputs_embeds is not None:
input_ids = None
# Get raw embeddings
outputs = encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
# MLM auxiliary objective
if mlm_input_ids is not None:
mlm_input_ids = mlm_input_ids.view((-1, mlm_input_ids.size(-1)))
mlm_outputs = encoder(
mlm_input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
# Pooling
pooler_output = cls.pooler(attention_mask, outputs)
pooler_output = pooler_output.view((batch_size, num_sent, pooler_output.size(-1))) # (bs, num_sent, hidden)
# If using "cls", we add an extra MLP layer
# (same as BERT's original implementation) over the representation.
if cls.pooler_type == "cls":
# print("this pooler is cls and running mlp")
pooler_output = cls.mlp(pooler_output)
# Separate representation
z1, z2 = pooler_output[:, 0], pooler_output[:, 1]
# simcse.mse_loss.global_num += 8
# print(simcse.mse_loss.global_num)
tensor_left, tensor_right = simcse.mse_loss.giveMeBatchEmbeddings(simcse.mse_loss.global_num,
simcse.readEmbeddings.data)
simcse.mse_loss.global_num += 32
# print(F.mse_loss(z1,tensor_left))
# print(F.mse_loss(z2,tensor_right))
# print(tensor_left.size())
# print(tensor_right.size())
# print(len(pooler_output[:,]))
# print(len(z1))
# print(len(z2))
# print(len(z1[0]))
# print(len(z2[0]))
# print(F.mse_loss(z1[0], z2[0]))
# Hard negative
if num_sent == 3:
z3 = pooler_output[:, 2]
# Gather all embeddings if using distributed training
if dist.is_initialized() and cls.training:
# Gather hard negative
if num_sent >= 3:
z3_list = [torch.zeros_like(z3) for _ in range(dist.get_world_size())]
dist.all_gather(tensor_list=z3_list, tensor=z3.contiguous())
z3_list[dist.get_rank()] = z3
z3 = torch.cat(z3_list, 0)
# Dummy vectors for allgather
z1_list = [torch.zeros_like(z1) for _ in range(dist.get_world_size())]
z2_list = [torch.zeros_like(z2) for _ in range(dist.get_world_size())]
# Allgather
dist.all_gather(tensor_list=z1_list, tensor=z1.contiguous())
dist.all_gather(tensor_list=z2_list, tensor=z2.contiguous())
# Since allgather results do not have gradients, we replace the
# current process's corresponding embeddings with original tensors
z1_list[dist.get_rank()] = z1
z2_list[dist.get_rank()] = z2
# Get full batch embeddings: (bs x N, hidden)
z1 = torch.cat(z1_list, 0)
z2 = torch.cat(z2_list, 0)
ziang_loss = F.mse_loss(z1, tensor_left) + F.mse_loss(z2, tensor_right)
# print("\n MSE Loss is : ", ziang_loss)
softmax_row, softmax_col = simcse.mse_loss.giveMeMatrix(tensor_left, tensor_right)
softmax_row_model, softmax_col_model = simcse.mse_loss.giveMeMatrix(z1,z2)
ziang_labels = torch.tensor([i for i in range(32)], device='cuda:0')
"""
this is cross entropy loss
"""
row_loss = F.cross_entropy(softmax_row, ziang_labels)
col_loss = F.cross_entropy(softmax_col, ziang_labels)
softmax_loss = (row_loss + col_loss) / 2
"""
this is KL div loss
"""
KL_row_loss = F.kl_div(softmax_row_model.log(), softmax_row, reduction='batchmean')
KL_col_loss = F.kl_div(softmax_col_model.log(), softmax_col, reduction='batchmean')
KL_loss = (KL_row_loss + KL_col_loss) / 2
ziang_loss = KL_loss + ziang_loss + softmax_loss
# ziang_loss = softmax_loss + ziang_loss
# ziang_loss = F.mse_loss(
# torch.nn.functional.cosine_similarity(tensor_left, tensor_right),
# torch.nn.functional.cosine_similarity(z1,z2)
# )
# ziang_loss /= 0.5
# print("\n Softmax Loss is : ", softmax_loss)
# print("\n Openai Cos Similarity between two paragraph: \n", torch.nn.functional.cosine_similarity(tensor_left, tensor_right))
# print("\nCos Similarity between two paragraph: \n", torch.nn.functional.cosine_similarity(z1, z2))
# print("\n My total loss currently: ", ziang_loss)
# print(z1.size())
# print(z2.size())
cos_sim = cls.sim(z1.unsqueeze(1), z2.unsqueeze(0))
# Hard negative
if num_sent >= 3:
z1_z3_cos = cls.sim(z1.unsqueeze(1), z3.unsqueeze(0))
cos_sim = torch.cat([cos_sim, z1_z3_cos], 1)
labels = torch.arange(cos_sim.size(0)).long().to(cls.device)
loss_fct = nn.CrossEntropyLoss()
# Calculate loss with hard negatives
if num_sent == 3:
# Note that weights are actually logits of weights
z3_weight = cls.model_args.hard_negative_weight
weights = torch.tensor(
[[0.0] * (cos_sim.size(-1) - z1_z3_cos.size(-1)) + [0.0] * i + [z3_weight] + [0.0] * (
z1_z3_cos.size(-1) - i - 1) for i in range(z1_z3_cos.size(-1))]
).to(cls.device)
cos_sim = cos_sim + weights
loss = loss_fct(cos_sim, labels)
# Calculate loss for MLM
if mlm_outputs is not None and mlm_labels is not None:
mlm_labels = mlm_labels.view(-1, mlm_labels.size(-1))
prediction_scores = cls.lm_head(mlm_outputs.last_hidden_state)
masked_lm_loss = loss_fct(prediction_scores.view(-1, cls.config.vocab_size), mlm_labels.view(-1))
loss = loss + cls.model_args.mlm_weight * masked_lm_loss
if not return_dict:
output = (cos_sim,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
# print("original " , loss)
return SequenceClassifierOutput(
# loss=loss,
loss=ziang_loss,
logits=cos_sim,
hidden_states=outputs.hidden_states,
# attentions=outputs.attentions,
)
def sentemb_forward(
cls,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
if inputs_embeds is not None:
input_ids = None
outputs = encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
pooler_output = cls.pooler(attention_mask, outputs)
if cls.pooler_type == "cls" and not cls.model_args.mlp_only_train:
pooler_output = cls.mlp(pooler_output)
if not return_dict:
return (outputs[0], pooler_output) + outputs[2:]
return BaseModelOutputWithPoolingAndCrossAttentions(
pooler_output=pooler_output,
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
)
class BertForCL(BertPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, *model_args, **model_kargs):
super().__init__(config)
self.model_args = model_kargs["model_args"]
self.bert = BertModel(config, add_pooling_layer=False)
if self.model_args.do_mlm:
self.lm_head = BertLMPredictionHead(config)
if self.model_args.init_embeddings_model:
if "glm" in self.model_args.init_embeddings_model:
init_glm(self.model_args.init_embeddings_model)
self.fc = nn.Linear(glm_model.config.hidden_size, config.hidden_size)
else:
raise NotImplementedError
cl_init(self, config)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
sent_emb=False,
mlm_input_ids=None,
mlm_labels=None,
):
if self.model_args.init_embeddings_model:
input_ids_for_glm = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
attention_mask_for_glm = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
if token_type_ids is not None:
token_type_ids_for_glm = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
outputs_from_glm = glm_model(input_ids_for_glm,
attention_mask=attention_mask_for_glm,
token_type_ids=token_type_ids_for_glm,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
inputs_embeds = self.fc(outputs_from_glm.last_hidden_state)
if sent_emb:
return sentemb_forward(self, self.bert,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
return cl_forward(self, self.bert,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mlm_input_ids=mlm_input_ids,
mlm_labels=mlm_labels,
)
class RobertaForCL(RobertaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, *model_args, **model_kargs):
super().__init__(config)
self.model_args = model_kargs["model_args"]
self.roberta = RobertaModel(config, add_pooling_layer=False)
if self.model_args.do_mlm:
self.lm_head = RobertaLMHead(config)
if self.model_args.init_embeddings_model:
if "glm" in self.model_args.init_embeddings_model:
init_glm(self.model_args.init_embeddings_model)
self.fc = nn.Linear(glm_model.config.hidden_size, config.hidden_size)
else:
raise NotImplementedError
cl_init(self, config)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
sent_emb=False,
mlm_input_ids=None,
mlm_labels=None,
):
if self.model_args.init_embeddings_model and not sent_emb:
input_ids_for_glm = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
attention_mask_for_glm = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
if token_type_ids is not None:
token_type_ids_for_glm = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
outputs_from_glm = glm_model(input_ids_for_glm,
attention_mask=attention_mask_for_glm,
token_type_ids=token_type_ids_for_glm,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
inputs_embeds = self.fc(outputs_from_glm.last_hidden_state)
if sent_emb:
return sentemb_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
return cl_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mlm_input_ids=mlm_input_ids,
mlm_labels=mlm_labels,
)