--- license: apache-2.0 base_model: - internlm/internlm3-8b-instruct tags: - llama - internlm3 --- # Converted Llama from InternLM3-8B-Instruct ## Descritpion This is a converted model from [InternLM3-8B-Instruct](https://huggingface.co/internlm/internlm3-8b-instruct) to __LLaMA__ format. This conversion allows you to use InternLM3-8B-Instruct as if it were a Llama model, which is convenient for some *inference use cases*. The __precision__ is __excatly the same__ as the original model. ## Usage You can load the model using the `LlamaForCausalLM` class as shown below: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM device = "cuda" # the device to load the model onto, cpu or cuda attn_impl = 'eager' # the attention implementation to use prompt = "大模型和人工智能经历了两年的快速发展,请你以此主题对人工智能的从业者写一段新年寄语" system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语). - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless. - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ] tokenizer = AutoTokenizer.from_pretrained("silence09/InternLM3-8B-Instruct-Converted-LlaMA", trust_remote_code=True) text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) print(prompt) llama_model = LlamaForCausalLM.from_pretrained( "silence09/InternLM3-8B-Instruct-Converted-LlaMA", torch_dtype='auto', attn_implementation=attn_impl).to(device) llama_generated_ids = llama_model.generate(model_inputs.input_ids, max_new_tokens=100, do_sample=False) llama_generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, llama_generated_ids) ] llama_response = tokenizer.batch_decode(llama_generated_ids, skip_special_tokens=True)[0] print(llama_response) ``` ## Precision Guarantee To comare result with the original model, you can use this [code](https://github.com/silencelamb/naked_llama/blob/main/hf_example/hf_internlm3_8b_llama_compare.py) ## More Info It was converted using the python script available at [this repository](https://github.com/silencelamb/naked_llama/blob/main/hf_example/convert_internlm3_to_llama_hf.py)