Sieun Park commited on
Commit
35bfe29
·
1 Parent(s): 4177091

Upload . with huggingface_hub

Browse files
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
36
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 384, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ddb54cb980b5bd7b34e3c8b8de7a00e460030c91d88da6b5209ceef4deaaa40
3
+ size 1183935
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+
8
+ ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Evaluation Results
38
+
39
+ <!--- Describe how your model was evaluated -->
40
+
41
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
+
43
+
44
+ ## Training
45
+ The model was trained with the parameters:
46
+
47
+ **DataLoader**:
48
+
49
+ `torch.utils.data.dataloader.DataLoader` of length 2815 with parameters:
50
+ ```
51
+ {'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
+ ```
53
+
54
+ **Loss**:
55
+
56
+ `__main__.TwosentCosineSimilarity`
57
+
58
+ Parameters of the fit()-Method:
59
+ ```
60
+ {
61
+ "epochs": 10,
62
+ "evaluation_steps": 5000,
63
+ "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
64
+ "max_grad_norm": 1,
65
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
66
+ "optimizer_params": {
67
+ "lr": 1e-05
68
+ },
69
+ "scheduler": "WarmupLinear",
70
+ "steps_per_epoch": null,
71
+ "warmup_steps": 10000,
72
+ "weight_decay": 0.01
73
+ }
74
+ ```
75
+
76
+
77
+ ## Full Model Architecture
78
+ ```
79
+ SentenceTransformer(
80
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
81
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
+ (2): Dense({'in_features': 384, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
83
+ )
84
+ ```
85
+
86
+ ## Citing & Authors
87
+
88
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/krenerd_msmarco-distilbert-cos-v5_en-ko-ja_v1.2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.26.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.26.1",
5
+ "pytorch": "1.13.1+cu116"
6
+ }
7
+ }
eval/mse_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,MSE
2
+ 0,-1,0.07739276625216007
3
+ 1,-1,0.07871822454035282
4
+ 2,-1,0.08125526364892721
5
+ 3,-1,0.08475463255308568
6
+ 4,-1,0.08700703037902713
7
+ 5,-1,0.08860978414304554
8
+ 6,-1,0.08973792428150773
9
+ 7,-1,0.0897291989531368
10
+ 8,-1,0.08952902862802148
11
+ 9,-1,0.08921260596252978
eval/mse_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,MSE
2
+ 0,-1,0.07465468370355666
3
+ 1,-1,0.07578869699500501
4
+ 2,-1,0.07826064247637987
5
+ 3,-1,0.0814322498627007
6
+ 4,-1,0.08360195206478238
7
+ 5,-1,0.0850712473038584
8
+ 6,-1,0.08588494383729994
9
+ 7,-1,0.08597023552283645
10
+ 8,-1,0.0857240695040673
11
+ 9,-1,0.08541608694940805
eval/similarity_evaluation_STS.en-en.txt_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,-1,0.8147488209561811,0.8331157146252346,0.8277546087969095,0.8268392877392996,0.8273958288660017,0.8275185164450473,0.7606816647799216,0.7747712373101335
3
+ 1,-1,0.8153415968996263,0.8344895478987728,0.8276120202495106,0.8277633770480815,0.8271664910945171,0.8275173632553942,0.7633356839873534,0.775377046274626
4
+ 2,-1,0.8185088239925613,0.8374832282385364,0.8296574252288444,0.8283399718746922,0.8293530105636183,0.8286947698913335,0.7701822995605637,0.7859717840153252
5
+ 3,-1,0.8185649097106077,0.8388897352189159,0.830535693306541,0.8297587795447062,0.8297611311825416,0.8284287674779903,0.7661368511416309,0.7829062215205107
6
+ 4,-1,0.8220624500218002,0.8402858634924164,0.8312255446967585,0.8293297929937077,0.8303915890103634,0.8281485423922574,0.7729072256712058,0.7896839015090461
7
+ 5,-1,0.8212640029246959,0.839186873752896,0.8313674563372009,0.8295577401484944,0.8305136705950673,0.8289223326495693,0.7710450461750568,0.7868631996172657
8
+ 6,-1,0.8236747604269405,0.841999887713655,0.8309973484381926,0.8311971914388246,0.8302432913004139,0.8300140188546191,0.7748782868135271,0.793443299778549
9
+ 7,-1,0.8224808215190609,0.8408105647846322,0.8308845203125629,0.8303126949748035,0.8299220603983455,0.8290757068734478,0.7715620357773744,0.7902301290081222
10
+ 8,-1,0.8237444463407186,0.8416485492659733,0.8312203379386249,0.830231202905976,0.8303916892139727,0.8291806471318909,0.7737773647243381,0.7915424588334885
11
+ 9,-1,0.8240155968968835,0.8420690790928483,0.8314834651691148,0.8312233304042976,0.8305852158002336,0.8303261488540912,0.7731504635060087,0.7915639850403486
eval/translation_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,src2trg,trg2src
2
+ 0,-1,0.905,0.887
3
+ 1,-1,0.903,0.888
4
+ 2,-1,0.909,0.887
5
+ 3,-1,0.904,0.89
6
+ 4,-1,0.907,0.889
7
+ 5,-1,0.904,0.89
8
+ 6,-1,0.907,0.89
9
+ 7,-1,0.907,0.89
10
+ 8,-1,0.908,0.889
11
+ 9,-1,0.908,0.889
eval/translation_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,src2trg,trg2src
2
+ 0,-1,0.948,0.919
3
+ 1,-1,0.947,0.92
4
+ 2,-1,0.948,0.918
5
+ 3,-1,0.945,0.923
6
+ 4,-1,0.948,0.919
7
+ 5,-1,0.946,0.919
8
+ 6,-1,0.948,0.921
9
+ 7,-1,0.947,0.921
10
+ 8,-1,0.946,0.923
11
+ 9,-1,0.948,0.923
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d61999326bbf82f03d0278d87d573c01573cb1821fb42c7c95632c9b4b90027
3
+ size 470686253
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60b6b43406a48bf3638526314f3d232d97058bc93472ff2de930d43686fa441
3
+ size 17082913
tokenizer_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "do_lower_case": true,
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 512,
15
+ "name_or_path": "/root/.cache/torch/sentence_transformers/krenerd_msmarco-distilbert-cos-v5_en-ko-ja_v1.2/",
16
+ "pad_token": "<pad>",
17
+ "sep_token": "</s>",
18
+ "special_tokens_map_file": null,
19
+ "strip_accents": null,
20
+ "tokenize_chinese_chars": true,
21
+ "tokenizer_class": "BertTokenizer",
22
+ "unk_token": "<unk>"
23
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71b44701d7efd054205115acfa6ef126c5d2f84bd3affe0c59e48163674d19a6
3
+ size 14763234