--- library_name: transformers license: bsd-3-clause base_model: Salesforce/blip-image-captioning-large tags: - generated_from_trainer datasets: - imagefolder model-index: - name: blip-image-captioning-large-shyam results: [] --- # blip-image-captioning-large-shyam This model is a fine-tuned version of [Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Wer Score: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 6.7457 | 5.0 | 50 | 3.7819 | 0.9091 | | 1.9042 | 10.0 | 100 | 0.6590 | 0.9091 | | 0.3114 | 15.0 | 150 | 0.2169 | 0.9091 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1