|
|
|
""" |
|
Run YOLOv5 benchmarks on all supported export formats |
|
|
|
Format | `export.py --include` | Model |
|
--- | --- | --- |
|
PyTorch | - | yolov5s.pt |
|
TorchScript | `torchscript` | yolov5s.torchscript |
|
ONNX | `onnx` | yolov5s.onnx |
|
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
TensorRT | `engine` | yolov5s.engine |
|
CoreML | `coreml` | yolov5s.mlmodel |
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
TensorFlow GraphDef | `pb` | yolov5s.pb |
|
TensorFlow Lite | `tflite` | yolov5s.tflite |
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
|
Requirements: |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT |
|
|
|
Usage: |
|
$ python benchmarks.py --weights yolov5s.pt --img 640 |
|
""" |
|
|
|
import argparse |
|
import platform |
|
import sys |
|
import time |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
|
|
import export |
|
from models.experimental import attempt_load |
|
from models.yolo import SegmentationModel |
|
from segment.val import run as val_seg |
|
from utils import notebook_init |
|
from utils.general import LOGGER, check_yaml, file_size, print_args |
|
from utils.torch_utils import select_device |
|
from val import run as val_det |
|
|
|
|
|
def run( |
|
weights=ROOT / 'yolov5s.pt', |
|
imgsz=640, |
|
batch_size=1, |
|
data=ROOT / 'data/coco128.yaml', |
|
device='', |
|
half=False, |
|
test=False, |
|
pt_only=False, |
|
hard_fail=False, |
|
): |
|
y, t = [], time.time() |
|
device = select_device(device) |
|
model_type = type(attempt_load(weights, fuse=False)) |
|
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): |
|
try: |
|
assert i not in (9, 10), 'inference not supported' |
|
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' |
|
if 'cpu' in device.type: |
|
assert cpu, 'inference not supported on CPU' |
|
if 'cuda' in device.type: |
|
assert gpu, 'inference not supported on GPU' |
|
|
|
|
|
if f == '-': |
|
w = weights |
|
else: |
|
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] |
|
assert suffix in str(w), 'export failed' |
|
|
|
|
|
if model_type == SegmentationModel: |
|
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) |
|
metric = result[0][7] |
|
else: |
|
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) |
|
metric = result[0][3] |
|
speed = result[2][1] |
|
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) |
|
except Exception as e: |
|
if hard_fail: |
|
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' |
|
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}') |
|
y.append([name, None, None, None]) |
|
if pt_only and i == 0: |
|
break |
|
|
|
|
|
LOGGER.info('\n') |
|
parse_opt() |
|
notebook_init() |
|
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] |
|
py = pd.DataFrame(y, columns=c) |
|
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') |
|
LOGGER.info(str(py if map else py.iloc[:, :2])) |
|
if hard_fail and isinstance(hard_fail, str): |
|
metrics = py['mAP50-95'].array |
|
floor = eval(hard_fail) |
|
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}' |
|
return py |
|
|
|
|
|
def test( |
|
weights=ROOT / 'yolov5s.pt', |
|
imgsz=640, |
|
batch_size=1, |
|
data=ROOT / 'data/coco128.yaml', |
|
device='', |
|
half=False, |
|
test=False, |
|
pt_only=False, |
|
hard_fail=False, |
|
): |
|
y, t = [], time.time() |
|
device = select_device(device) |
|
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): |
|
try: |
|
w = weights if f == '-' else \ |
|
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] |
|
assert suffix in str(w), 'export failed' |
|
y.append([name, True]) |
|
except Exception: |
|
y.append([name, False]) |
|
|
|
|
|
LOGGER.info('\n') |
|
parse_opt() |
|
notebook_init() |
|
py = pd.DataFrame(y, columns=['Format', 'Export']) |
|
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') |
|
LOGGER.info(str(py)) |
|
return py |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') |
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
parser.add_argument('--test', action='store_true', help='test exports only') |
|
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') |
|
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric') |
|
opt = parser.parse_args() |
|
opt.data = check_yaml(opt.data) |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
test(**vars(opt)) if opt.test else run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|