--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-et-cv_8_0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: et metrics: - name: Test WER type: wer value: 0.34180826781638346 - name: Test CER type: cer value: 0.07356192733576256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 34.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 45.53 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 54.41 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4623 - Wer: 0.3420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3082 | 12.5 | 500 | 0.3871 | 0.4907 | | 0.1497 | 25.0 | 1000 | 0.4168 | 0.4278 | | 0.1243 | 37.5 | 1500 | 0.4446 | 0.4220 | | 0.0954 | 50.0 | 2000 | 0.4426 | 0.3946 | | 0.0741 | 62.5 | 2500 | 0.4502 | 0.3800 | | 0.0533 | 75.0 | 3000 | 0.4618 | 0.3653 | | 0.0447 | 87.5 | 3500 | 0.4518 | 0.3461 | | 0.0396 | 100.0 | 4000 | 0.4623 | 0.3420 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0