shouqiangli commited on
Commit
3a26aa3
·
1 Parent(s): a61615c

Upload 9 files

Browse files
MODEL_LICENSE ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The ChatGLM2-6B License
2
+
3
+ 1. Definitions
4
+
5
+ “Licensor” means the ChatGLM2-6B Model Team that distributes its Software.
6
+
7
+ “Software” means the ChatGLM2-6B model parameters made available under this license.
8
+
9
+ 2. License Grant
10
+
11
+ Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software solely for your non-commercial research purposes.
12
+
13
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
14
+
15
+ 3. Restriction
16
+
17
+ You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any commercial, military, or illegal purposes.
18
+
19
+ You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
20
+
21
+ 4. Disclaimer
22
+
23
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24
+
25
+ 5. Limitation of Liability
26
+
27
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
28
+
29
+ 6. Dispute Resolution
30
+
31
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
32
+
33
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at [email protected].
README.md CHANGED
@@ -1,3 +1,95 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - glm
7
+ - chatglm
8
+ - thudm
9
  ---
10
+ # ChatGLM2-6B
11
+ <p align="center">
12
+ 💻 <a href="https://github.com/THUDM/ChatGLM2-6B" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br>
13
+ </p>
14
+
15
+ <p align="center">
16
+ 👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-1y7pqoloy-9b1g6T6JjA8J0KxvUjbwJw" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM-6B/blob/main/resources/WECHAT.md" target="_blank">WeChat</a>
17
+ </p>
18
+
19
+ ## 介绍
20
+ ChatGLM**2**-6B 是开源中英双语对话模型 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM**2**-6B 引入了如下新特性:
21
+
22
+ 1. **更强大的性能**:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM](https://github.com/THUDM/GLM) 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,[评测结果](#评测结果)显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
23
+ 2. **更长的上下文**:基于 [FlashAttention](https://github.com/HazyResearch/flash-attention) 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
24
+ 3. **更高效的推理**:基于 [Multi-Query Attention](http://arxiv.org/abs/1911.02150) 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
25
+
26
+ ChatGLM**2**-6B is the second-generation version of the open-source bilingual (Chinese-English) chat model [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B). It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features:
27
+
28
+ 1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size.
29
+ 2. **Longer Context**: Based on [FlashAttention](https://github.com/HazyResearch/flash-attention) technique, we have extended the context length of the base model from 2K in ChatGLM-6B to 32K, and trained with a context length of 8K during the dialogue alignment, allowing for more rounds of dialogue. However, the current version of ChatGLM2-6B has limited understanding of single-round ultra-long documents, which we will focus on optimizing in future iterations.
30
+ 3. **More Efficient Inference**: Based on [Multi-Query Attention](http://arxiv.org/abs/1911.02150) technique, ChatGLM2-6B has more efficient inference speed and lower GPU memory usage: under the official implementation, the inference speed has increased by 42% compared to the first generation; under INT4 quantization, the dialogue length supported by 6G GPU memory has increased from 1K to 8K.
31
+
32
+ ## 软件依赖
33
+
34
+ ```shell
35
+ pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
36
+ ```
37
+
38
+ ## 代码调用
39
+
40
+ 可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
41
+
42
+ ```ipython
43
+ >>> from transformers import AutoTokenizer, AutoModel
44
+ >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
45
+ >>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
46
+ >>> model = model.eval()
47
+ >>> response, history = model.chat(tokenizer, "你好", history=[])
48
+ >>> print(response)
49
+ 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
50
+ >>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
51
+ >>> print(response)
52
+ 晚上睡不着可能���让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
53
+
54
+ 1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
55
+ 2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
56
+ 3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
57
+ 4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
58
+ 5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
59
+ 6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
60
+
61
+ 如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。
62
+ ```
63
+
64
+ 关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM2-6B)。
65
+
66
+ For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM2-6B).
67
+
68
+ ## Change Log
69
+ * v1.0
70
+
71
+ ## 协议
72
+
73
+ 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM2-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
74
+
75
+ ## 引用
76
+
77
+ 如果你觉得我们的工作有帮助的话,请考虑引用下列论文,ChatGLM2-6B 的论文会在近期公布,尽情期待~
78
+
79
+ ```
80
+ @article{zeng2022glm,
81
+ title={Glm-130b: An open bilingual pre-trained model},
82
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
83
+ journal={arXiv preprint arXiv:2210.02414},
84
+ year={2022}
85
+ }
86
+ ```
87
+ ```
88
+ @inproceedings{du2022glm,
89
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
90
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
91
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
92
+ pages={320--335},
93
+ year={2022}
94
+ }
95
+ ```
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm2-6b",
3
+ "model_type": "chatglm",
4
+ "architectures": [
5
+ "ChatGLMModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
9
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
10
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
11
+ },
12
+ "add_bias_linear": false,
13
+ "add_qkv_bias": true,
14
+ "apply_query_key_layer_scaling": true,
15
+ "apply_residual_connection_post_layernorm": false,
16
+ "attention_dropout": 0.0,
17
+ "attention_softmax_in_fp32": true,
18
+ "bias_dropout_fusion": true,
19
+ "ffn_hidden_size": 13696,
20
+ "fp32_residual_connection": false,
21
+ "hidden_dropout": 0.0,
22
+ "hidden_size": 4096,
23
+ "kv_channels": 128,
24
+ "layernorm_epsilon": 1e-05,
25
+ "multi_query_attention": true,
26
+ "multi_query_group_num": 2,
27
+ "num_attention_heads": 32,
28
+ "num_layers": 28,
29
+ "original_rope": true,
30
+ "padded_vocab_size": 65024,
31
+ "post_layer_norm": true,
32
+ "quantization_bit": 4,
33
+ "rmsnorm": true,
34
+ "seq_length": 32768,
35
+ "use_cache": true,
36
+ "torch_dtype": "float16",
37
+ "transformers_version": "4.27.1",
38
+ "tie_word_embeddings": false,
39
+ "eos_token_id": 2,
40
+ "pad_token_id": 0
41
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+ def __init__(
7
+ self,
8
+ num_layers=28,
9
+ padded_vocab_size=65024,
10
+ hidden_size=4096,
11
+ ffn_hidden_size=13696,
12
+ kv_channels=128,
13
+ num_attention_heads=32,
14
+ seq_length=2048,
15
+ hidden_dropout=0.0,
16
+ attention_dropout=0.0,
17
+ layernorm_epsilon=1e-5,
18
+ rmsnorm=True,
19
+ apply_residual_connection_post_layernorm=False,
20
+ post_layer_norm=True,
21
+ add_bias_linear=False,
22
+ add_qkv_bias=False,
23
+ bias_dropout_fusion=True,
24
+ multi_query_attention=False,
25
+ multi_query_group_num=1,
26
+ apply_query_key_layer_scaling=True,
27
+ attention_softmax_in_fp32=True,
28
+ fp32_residual_connection=False,
29
+ quantization_bit=0,
30
+ pre_seq_len=None,
31
+ prefix_projection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.attention_dropout = attention_dropout
44
+ self.layernorm_epsilon = layernorm_epsilon
45
+ self.rmsnorm = rmsnorm
46
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
47
+ self.post_layer_norm = post_layer_norm
48
+ self.add_bias_linear = add_bias_linear
49
+ self.add_qkv_bias = add_qkv_bias
50
+ self.bias_dropout_fusion = bias_dropout_fusion
51
+ self.multi_query_attention = multi_query_attention
52
+ self.multi_query_group_num = multi_query_group_num
53
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
54
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
55
+ self.fp32_residual_connection = fp32_residual_connection
56
+ self.quantization_bit = quantization_bit
57
+ self.pre_seq_len = pre_seq_len
58
+ self.prefix_projection = prefix_projection
59
+ super().__init__(**kwargs)
modeling_chatglm.py ADDED
@@ -0,0 +1,1192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm
14
+ from torch.nn.utils import skip_init
15
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
16
+
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ )
21
+ from transformers.modeling_utils import PreTrainedModel
22
+ from transformers.utils import logging
23
+ from transformers.generation.logits_process import LogitsProcessor
24
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
25
+
26
+ from .configuration_chatglm import ChatGLMConfig
27
+
28
+ # flags required to enable jit fusion kernels
29
+
30
+ if sys.platform != 'darwin':
31
+ torch._C._jit_set_profiling_mode(False)
32
+ torch._C._jit_set_profiling_executor(False)
33
+ torch._C._jit_override_can_fuse_on_cpu(True)
34
+ torch._C._jit_override_can_fuse_on_gpu(True)
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
39
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
40
+
41
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
42
+ "THUDM/chatglm2-6b",
43
+ # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
44
+ ]
45
+
46
+
47
+ def default_init(cls, *args, **kwargs):
48
+ return cls(*args, **kwargs)
49
+
50
+
51
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
52
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
53
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
54
+ scores.zero_()
55
+ scores[..., 5] = 5e4
56
+ return scores
57
+
58
+
59
+ class PrefixEncoder(torch.nn.Module):
60
+ """
61
+ The torch.nn model to encode the prefix
62
+ Input shape: (batch-size, prefix-length)
63
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
64
+ """
65
+
66
+ def __init__(self, config: ChatGLMConfig):
67
+ super().__init__()
68
+ self.prefix_projection = config.prefix_projection
69
+ if self.prefix_projection:
70
+ # Use a two-layer MLP to encode the prefix
71
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
72
+ self.trans = torch.nn.Sequential(
73
+ torch.nn.Linear(config.hidden_size, config.hidden_size),
74
+ torch.nn.Tanh(),
75
+ torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
76
+ )
77
+ else:
78
+ self.embedding = torch.nn.Embedding(config.pre_seq_len,
79
+ config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
80
+
81
+ def forward(self, prefix: torch.Tensor):
82
+ if self.prefix_projection:
83
+ prefix_tokens = self.embedding(prefix)
84
+ past_key_values = self.trans(prefix_tokens)
85
+ else:
86
+ past_key_values = self.embedding(prefix)
87
+ return past_key_values
88
+
89
+
90
+ def split_tensor_along_last_dim(
91
+ tensor: torch.Tensor,
92
+ num_partitions: int,
93
+ contiguous_split_chunks: bool = False,
94
+ ) -> List[torch.Tensor]:
95
+ """Split a tensor along its last dimension.
96
+
97
+ Arguments:
98
+ tensor: input tensor.
99
+ num_partitions: number of partitions to split the tensor
100
+ contiguous_split_chunks: If True, make each chunk contiguous
101
+ in memory.
102
+
103
+ Returns:
104
+ A list of Tensors
105
+ """
106
+ # Get the size and dimension.
107
+ last_dim = tensor.dim() - 1
108
+ last_dim_size = tensor.size()[last_dim] // num_partitions
109
+ # Split.
110
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
111
+ # Note: torch.split does not create contiguous tensors by default.
112
+ if contiguous_split_chunks:
113
+ return tuple(chunk.contiguous() for chunk in tensor_list)
114
+
115
+ return tensor_list
116
+
117
+
118
+ class RotaryEmbedding(nn.Module):
119
+ def __init__(self, dim, original_impl=False, device=None, dtype=None):
120
+ super().__init__()
121
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
122
+ self.register_buffer("inv_freq", inv_freq)
123
+ self.dim = dim
124
+ self.original_impl = original_impl
125
+
126
+ def forward_impl(
127
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
128
+ ):
129
+ """Enhanced Transformer with Rotary Position Embedding.
130
+
131
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
132
+ transformers/rope/__init__.py. MIT License:
133
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
134
+ """
135
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
136
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
137
+
138
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
139
+ seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
140
+
141
+ # Calculate the product of position index and $\theta_i$
142
+ idx_theta = torch.outer(seq_idx, theta).float()
143
+
144
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
145
+
146
+ # this is to mimic the behaviour of complex32, else we will get different results
147
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
148
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
149
+ return cache
150
+
151
+ def forward(self, max_seq_len, offset=0):
152
+ return self.forward_impl(
153
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
154
+ )
155
+
156
+
157
+ @torch.jit.script
158
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
159
+ # x: [sq, b, np, hn]
160
+ sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
161
+ rot_dim = rope_cache.shape[-2] * 2
162
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
163
+ # truncate to support variable sizes
164
+ rope_cache = rope_cache[:sq]
165
+ xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
166
+ rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
167
+ x_out2 = torch.stack(
168
+ [
169
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
170
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
171
+ ],
172
+ -1,
173
+ )
174
+ x_out2 = x_out2.flatten(3)
175
+ return torch.cat((x_out2, x_pass), dim=-1)
176
+
177
+
178
+ class RMSNorm(torch.nn.Module):
179
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
180
+ super().__init__()
181
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
182
+ self.eps = eps
183
+
184
+ def forward(self, hidden_states: torch.Tensor):
185
+ input_dtype = hidden_states.dtype
186
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
187
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
188
+
189
+ return (self.weight * hidden_states).to(input_dtype)
190
+
191
+
192
+ class CoreAttention(torch.nn.Module):
193
+ def __init__(self, config: ChatGLMConfig, layer_number):
194
+ super(CoreAttention, self).__init__()
195
+
196
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
197
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
198
+ if self.apply_query_key_layer_scaling:
199
+ self.attention_softmax_in_fp32 = True
200
+ self.layer_number = max(1, layer_number)
201
+
202
+ projection_size = config.kv_channels * config.num_attention_heads
203
+
204
+ # Per attention head and per partition values.
205
+ self.hidden_size_per_partition = projection_size
206
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
207
+ self.num_attention_heads_per_partition = config.num_attention_heads
208
+
209
+ coeff = None
210
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
211
+ if self.apply_query_key_layer_scaling:
212
+ coeff = self.layer_number
213
+ self.norm_factor *= coeff
214
+ self.coeff = coeff
215
+
216
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
217
+
218
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
219
+ pytorch_major_version = int(torch.__version__.split('.')[0])
220
+ if pytorch_major_version >= 2:
221
+ query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
222
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
223
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
224
+ is_causal=True)
225
+ else:
226
+ if attention_mask is not None:
227
+ attention_mask = ~attention_mask
228
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
229
+ attention_mask)
230
+ context_layer = context_layer.permute(2, 0, 1, 3)
231
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
232
+ context_layer = context_layer.reshape(*new_context_layer_shape)
233
+ else:
234
+ # Raw attention scores
235
+
236
+ # [b, np, sq, sk]
237
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
238
+
239
+ # [sq, b, np, hn] -> [sq, b * np, hn]
240
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
241
+ # [sk, b, np, hn] -> [sk, b * np, hn]
242
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
243
+
244
+ # preallocting input tensor: [b * np, sq, sk]
245
+ matmul_input_buffer = torch.empty(
246
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
247
+ device=query_layer.device
248
+ )
249
+
250
+ # Raw attention scores. [b * np, sq, sk]
251
+ matmul_result = torch.baddbmm(
252
+ matmul_input_buffer,
253
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
254
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
255
+ beta=0.0,
256
+ alpha=(1.0 / self.norm_factor),
257
+ )
258
+
259
+ # change view to [b, np, sq, sk]
260
+ attention_scores = matmul_result.view(*output_size)
261
+
262
+ # ===========================
263
+ # Attention probs and dropout
264
+ # ===========================
265
+
266
+ # attention scores and attention mask [b, np, sq, sk]
267
+ if self.attention_softmax_in_fp32:
268
+ attention_scores = attention_scores.float()
269
+ if self.coeff is not None:
270
+ attention_scores = attention_scores * self.coeff
271
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
272
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
273
+ device=attention_scores.device, dtype=torch.bool)
274
+ attention_mask.tril_()
275
+ attention_mask = ~attention_mask
276
+ if attention_mask is not None:
277
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
278
+ attention_probs = F.softmax(attention_scores, dim=-1)
279
+ attention_probs = attention_probs.type_as(value_layer)
280
+
281
+ # This is actually dropping out entire tokens to attend to, which might
282
+ # seem a bit unusual, but is taken from the original Transformer paper.
283
+ attention_probs = self.attention_dropout(attention_probs)
284
+ # =========================
285
+ # Context layer. [sq, b, hp]
286
+ # =========================
287
+
288
+ # value_layer -> context layer.
289
+ # [sk, b, np, hn] --> [b, np, sq, hn]
290
+
291
+ # context layer shape: [b, np, sq, hn]
292
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
293
+ # change view [sk, b * np, hn]
294
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
295
+ # change view [b * np, sq, sk]
296
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
297
+ # matmul: [b * np, sq, hn]
298
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
299
+ # change view [b, np, sq, hn]
300
+ context_layer = context_layer.view(*output_size)
301
+ # [b, np, sq, hn] --> [sq, b, np, hn]
302
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
303
+ # [sq, b, np, hn] --> [sq, b, hp]
304
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
305
+ context_layer = context_layer.view(*new_context_layer_shape)
306
+
307
+ return context_layer
308
+
309
+
310
+ class SelfAttention(torch.nn.Module):
311
+ """Parallel self-attention layer abstract class.
312
+
313
+ Self-attention layer takes input with size [s, b, h]
314
+ and returns output of the same size.
315
+ """
316
+
317
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
318
+ super(SelfAttention, self).__init__()
319
+ self.layer_number = max(1, layer_number)
320
+
321
+ self.projection_size = config.kv_channels * config.num_attention_heads
322
+
323
+ # Per attention head and per partition values.
324
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
325
+ self.num_attention_heads_per_partition = config.num_attention_heads
326
+
327
+ self.multi_query_attention = config.multi_query_attention
328
+ self.qkv_hidden_size = 3 * self.projection_size
329
+ if self.multi_query_attention:
330
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
331
+ self.qkv_hidden_size = (
332
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
333
+ )
334
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
335
+ bias=config.add_bias_linear or config.add_qkv_bias,
336
+ device=device, **_config_to_kwargs(config)
337
+ )
338
+
339
+ self.core_attention = CoreAttention(config, self.layer_number)
340
+
341
+ # Output.
342
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
343
+ device=device, **_config_to_kwargs(config)
344
+ )
345
+
346
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
347
+ if self.multi_query_attention:
348
+ num_attention_heads = self.num_multi_query_groups_per_partition
349
+ else:
350
+ num_attention_heads = self.num_attention_heads_per_partition
351
+ return torch.empty(
352
+ inference_max_sequence_len,
353
+ batch_size,
354
+ num_attention_heads,
355
+ self.hidden_size_per_attention_head,
356
+ dtype=dtype,
357
+ device=device,
358
+ )
359
+
360
+ def forward(
361
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
362
+ ):
363
+ # hidden_states: [sq, b, h]
364
+
365
+ # =================================================
366
+ # Pre-allocate memory for key-values for inference.
367
+ # =================================================
368
+ # =====================
369
+ # Query, Key, and Value
370
+ # =====================
371
+
372
+ # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
373
+ mixed_x_layer = self.query_key_value(hidden_states)
374
+
375
+ if self.multi_query_attention:
376
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
377
+ [
378
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
379
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
380
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
381
+ ],
382
+ dim=-1,
383
+ )
384
+ query_layer = query_layer.view(
385
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
386
+ )
387
+ key_layer = key_layer.view(
388
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
389
+ )
390
+ value_layer = value_layer.view(
391
+ value_layer.size()[:-1]
392
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
393
+ )
394
+ else:
395
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
396
+ (self.num_attention_heads_per_partition,
397
+ 3 * self.hidden_size_per_attention_head)
398
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
399
+
400
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
401
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
402
+
403
+ # apply relative positional encoding (rotary embedding)
404
+ if rotary_pos_emb is not None:
405
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
406
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
407
+
408
+ # adjust key and value for inference
409
+ if kv_cache is not None:
410
+ cache_k, cache_v = kv_cache
411
+ key_layer = torch.cat((cache_k, key_layer), dim=0)
412
+ value_layer = torch.cat((cache_v, value_layer), dim=0)
413
+ if use_cache:
414
+ kv_cache = (key_layer, value_layer)
415
+ else:
416
+ kv_cache = None
417
+
418
+ if self.multi_query_attention:
419
+ key_layer = key_layer.unsqueeze(-2)
420
+ key_layer = key_layer.expand(
421
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
422
+ )
423
+ key_layer = key_layer.contiguous().view(
424
+ key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
425
+ )
426
+ value_layer = value_layer.unsqueeze(-2)
427
+ value_layer = value_layer.expand(
428
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
429
+ )
430
+ value_layer = value_layer.contiguous().view(
431
+ value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
432
+ )
433
+
434
+ # ==================================
435
+ # core attention computation
436
+ # ==================================
437
+
438
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
439
+
440
+ # =================
441
+ # Output. [sq, b, h]
442
+ # =================
443
+
444
+ output = self.dense(context_layer)
445
+
446
+ return output, kv_cache
447
+
448
+
449
+ def _config_to_kwargs(args):
450
+ common_kwargs = {
451
+ "dtype": args.torch_dtype,
452
+ }
453
+ return common_kwargs
454
+
455
+
456
+ class MLP(torch.nn.Module):
457
+ """MLP.
458
+
459
+ MLP will take the input with h hidden state, project it to 4*h
460
+ hidden dimension, perform nonlinear transformation, and project the
461
+ state back into h hidden dimension.
462
+ """
463
+
464
+ def __init__(self, config: ChatGLMConfig, device=None):
465
+ super(MLP, self).__init__()
466
+
467
+ self.add_bias = config.add_bias_linear
468
+
469
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
470
+ self.dense_h_to_4h = nn.Linear(
471
+ config.hidden_size,
472
+ config.ffn_hidden_size * 2,
473
+ bias=self.add_bias,
474
+ device=device,
475
+ **_config_to_kwargs(config)
476
+ )
477
+
478
+ def swiglu(x):
479
+ x = torch.chunk(x, 2, dim=-1)
480
+ return F.silu(x[0]) * x[1]
481
+
482
+ self.activation_func = swiglu
483
+
484
+ # Project back to h.
485
+ self.dense_4h_to_h = nn.Linear(
486
+ config.ffn_hidden_size,
487
+ config.hidden_size,
488
+ bias=self.add_bias,
489
+ device=device,
490
+ **_config_to_kwargs(config)
491
+ )
492
+
493
+ def forward(self, hidden_states):
494
+ # [s, b, 4hp]
495
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
496
+ intermediate_parallel = self.activation_func(intermediate_parallel)
497
+ # [s, b, h]
498
+ output = self.dense_4h_to_h(intermediate_parallel)
499
+ return output
500
+
501
+
502
+ class GLMBlock(torch.nn.Module):
503
+ """A single transformer layer.
504
+
505
+ Transformer layer takes input with size [s, b, h] and returns an
506
+ output of the same size.
507
+ """
508
+
509
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
510
+ super(GLMBlock, self).__init__()
511
+ self.layer_number = layer_number
512
+
513
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
514
+
515
+ self.fp32_residual_connection = config.fp32_residual_connection
516
+
517
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
518
+ # Layernorm on the input data.
519
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
520
+ dtype=config.torch_dtype)
521
+
522
+ # Self attention.
523
+ self.self_attention = SelfAttention(config, layer_number, device=device)
524
+ self.hidden_dropout = config.hidden_dropout
525
+
526
+ # Layernorm on the attention output
527
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
528
+ dtype=config.torch_dtype)
529
+
530
+ # MLP
531
+ self.mlp = MLP(config, device=device)
532
+
533
+ def forward(
534
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
535
+ ):
536
+ # hidden_states: [s, b, h]
537
+
538
+ # Layer norm at the beginning of the transformer layer.
539
+ layernorm_output = self.input_layernorm(hidden_states)
540
+ # Self attention.
541
+ attention_output, kv_cache = self.self_attention(
542
+ layernorm_output,
543
+ attention_mask,
544
+ rotary_pos_emb,
545
+ kv_cache=kv_cache,
546
+ use_cache=use_cache
547
+ )
548
+
549
+ # Residual connection.
550
+ if self.apply_residual_connection_post_layernorm:
551
+ residual = layernorm_output
552
+ else:
553
+ residual = hidden_states
554
+
555
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
556
+ layernorm_input = residual + layernorm_input
557
+
558
+ # Layer norm post the self attention.
559
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
560
+
561
+ # MLP.
562
+ mlp_output = self.mlp(layernorm_output)
563
+
564
+ # Second residual connection.
565
+ if self.apply_residual_connection_post_layernorm:
566
+ residual = layernorm_output
567
+ else:
568
+ residual = layernorm_input
569
+
570
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
571
+ output = residual + output
572
+
573
+ return output, kv_cache
574
+
575
+
576
+ class GLMTransformer(torch.nn.Module):
577
+ """Transformer class."""
578
+
579
+ def __init__(self, config: ChatGLMConfig, device=None):
580
+ super(GLMTransformer, self).__init__()
581
+
582
+ self.fp32_residual_connection = config.fp32_residual_connection
583
+ self.post_layer_norm = config.post_layer_norm
584
+
585
+ # Number of layers.
586
+ self.num_layers = config.num_layers
587
+
588
+ # Transformer layers.
589
+ def build_layer(layer_number):
590
+ return GLMBlock(config, layer_number, device=device)
591
+
592
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
593
+
594
+ if self.post_layer_norm:
595
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
596
+ # Final layer norm before output.
597
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
598
+ dtype=config.torch_dtype)
599
+
600
+ self.gradient_checkpointing = False
601
+
602
+ def _get_layer(self, layer_number):
603
+ return self.layers[layer_number]
604
+
605
+ def forward(
606
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
607
+ use_cache: Optional[bool] = True,
608
+ output_hidden_states: Optional[bool] = False,
609
+ ):
610
+ if not kv_caches:
611
+ kv_caches = [None for _ in range(self.num_layers)]
612
+ presents = () if use_cache else None
613
+ if self.gradient_checkpointing and self.training:
614
+ if use_cache:
615
+ logger.warning_once(
616
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
617
+ )
618
+ use_cache = False
619
+
620
+ all_self_attentions = None
621
+ all_hidden_states = () if output_hidden_states else None
622
+ for index in range(self.num_layers):
623
+ if output_hidden_states:
624
+ all_hidden_states = all_hidden_states + (hidden_states,)
625
+
626
+ layer = self._get_layer(index)
627
+ if self.gradient_checkpointing and self.training:
628
+ layer_ret = torch.utils.checkpoint.checkpoint(
629
+ layer,
630
+ hidden_states,
631
+ attention_mask,
632
+ rotary_pos_emb,
633
+ kv_caches[index],
634
+ use_cache
635
+ )
636
+ else:
637
+ layer_ret = layer(
638
+ hidden_states,
639
+ attention_mask,
640
+ rotary_pos_emb,
641
+ kv_cache=kv_caches[index],
642
+ use_cache=use_cache
643
+ )
644
+ hidden_states, kv_cache = layer_ret
645
+ if use_cache:
646
+ presents = presents + (kv_cache,)
647
+
648
+ if output_hidden_states:
649
+ all_hidden_states = all_hidden_states + (hidden_states,)
650
+
651
+ # Final layer norm.
652
+ if self.post_layer_norm:
653
+ hidden_states = self.final_layernorm(hidden_states)
654
+
655
+ return hidden_states, presents, all_hidden_states, all_self_attentions
656
+
657
+
658
+ class ChatGLMPreTrainedModel(PreTrainedModel):
659
+ """
660
+ An abstract class to handle weights initialization and
661
+ a simple interface for downloading and loading pretrained models.
662
+ """
663
+
664
+ is_parallelizable = False
665
+ supports_gradient_checkpointing = True
666
+ config_class = ChatGLMConfig
667
+ base_model_prefix = "transformer"
668
+ _no_split_modules = ["GLMBlock"]
669
+
670
+ def _init_weights(self, module: nn.Module):
671
+ """Initialize the weights."""
672
+ return
673
+
674
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
675
+ batch_size, seq_length = input_ids.shape
676
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
677
+ full_attention_mask.tril_()
678
+ past_length = 0
679
+ if past_key_values:
680
+ past_length = past_key_values[0][0].shape[0]
681
+ if past_length:
682
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
683
+ device=input_ids.device), full_attention_mask), dim=-1)
684
+ if padding_mask is not None:
685
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
686
+ if not past_length and padding_mask is not None:
687
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
688
+ full_attention_mask = (full_attention_mask < 0.5).bool()
689
+ full_attention_mask.unsqueeze_(1)
690
+ return full_attention_mask
691
+
692
+ def get_position_ids(self, input_ids, device):
693
+ batch_size, seq_length = input_ids.shape
694
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
695
+ return position_ids
696
+
697
+ def _set_gradient_checkpointing(self, module, value=False):
698
+ if isinstance(module, GLMTransformer):
699
+ module.gradient_checkpointing = value
700
+
701
+
702
+ class Embedding(torch.nn.Module):
703
+ """Language model embeddings."""
704
+
705
+ def __init__(self, config: ChatGLMConfig, device=None):
706
+ super(Embedding, self).__init__()
707
+
708
+ self.hidden_size = config.hidden_size
709
+ # Word embeddings (parallel).
710
+ self.word_embeddings = nn.Embedding(
711
+ config.padded_vocab_size,
712
+ self.hidden_size,
713
+ dtype=config.torch_dtype,
714
+ device=device
715
+ )
716
+ self.fp32_residual_connection = config.fp32_residual_connection
717
+
718
+ def forward(self, input_ids):
719
+ # Embeddings.
720
+ words_embeddings = self.word_embeddings(input_ids)
721
+ embeddings = words_embeddings
722
+ # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
723
+ embeddings = embeddings.transpose(0, 1).contiguous()
724
+ # If the input flag for fp32 residual connection is set, convert for float.
725
+ if self.fp32_residual_connection:
726
+ embeddings = embeddings.float()
727
+ return embeddings
728
+
729
+
730
+ class ChatGLMModel(ChatGLMPreTrainedModel):
731
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
732
+ super().__init__(config)
733
+ if empty_init:
734
+ init_method = skip_init
735
+ else:
736
+ init_method = default_init
737
+ init_kwargs = {}
738
+ if device is not None:
739
+ init_kwargs["device"] = device
740
+ self.embedding = init_method(Embedding, config, **init_kwargs)
741
+ self.num_layers = config.num_layers
742
+ self.multi_query_group_num = config.multi_query_group_num
743
+ self.kv_channels = config.kv_channels
744
+
745
+ # Rotary positional embeddings
746
+ self.seq_length = config.seq_length
747
+ rotary_dim = (
748
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
749
+ )
750
+
751
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
752
+ dtype=config.torch_dtype)
753
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
754
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
755
+ dtype=config.torch_dtype, **init_kwargs)
756
+ self.pre_seq_len = config.pre_seq_len
757
+ self.prefix_projection = config.prefix_projection
758
+ if self.pre_seq_len is not None:
759
+ for param in self.parameters():
760
+ param.requires_grad = False
761
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
762
+ self.prefix_encoder = PrefixEncoder(config)
763
+ self.dropout = torch.nn.Dropout(0.1)
764
+
765
+ def get_input_embeddings(self):
766
+ return self.embedding.word_embeddings
767
+
768
+ def get_prompt(self, batch_size, device, dtype=torch.half):
769
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
770
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
771
+ past_key_values = past_key_values.view(
772
+ batch_size,
773
+ self.pre_seq_len,
774
+ self.num_layers * 2,
775
+ self.multi_query_group_num,
776
+ self.kv_channels
777
+ )
778
+ # seq_len, b, nh, hidden_size
779
+ past_key_values = self.dropout(past_key_values)
780
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
781
+ return past_key_values
782
+
783
+ def forward(
784
+ self,
785
+ input_ids,
786
+ position_ids: Optional[torch.Tensor] = None,
787
+ attention_mask: Optional[torch.BoolTensor] = None,
788
+ full_attention_mask: Optional[torch.BoolTensor] = None,
789
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
790
+ inputs_embeds: Optional[torch.Tensor] = None,
791
+ use_cache: Optional[bool] = None,
792
+ output_hidden_states: Optional[bool] = None,
793
+ return_dict: Optional[bool] = None,
794
+ ):
795
+ output_hidden_states = (
796
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
797
+ )
798
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
799
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
800
+
801
+ batch_size, seq_length = input_ids.shape
802
+
803
+ if inputs_embeds is None:
804
+ inputs_embeds = self.embedding(input_ids)
805
+
806
+ if self.pre_seq_len is not None:
807
+ if past_key_values is None:
808
+ past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
809
+ dtype=inputs_embeds.dtype)
810
+ if attention_mask is not None:
811
+ attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
812
+ attention_mask], dim=-1)
813
+
814
+ if full_attention_mask is None:
815
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
816
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
817
+
818
+ # Rotary positional embeddings
819
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
820
+ if position_ids is not None:
821
+ rotary_pos_emb = rotary_pos_emb[position_ids]
822
+ else:
823
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
824
+ rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
825
+
826
+ # Run encoder.
827
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
828
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
829
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
830
+ )
831
+
832
+ if not return_dict:
833
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
834
+
835
+ return BaseModelOutputWithPast(
836
+ last_hidden_state=hidden_states,
837
+ past_key_values=presents,
838
+ hidden_states=all_hidden_states,
839
+ attentions=all_self_attentions,
840
+ )
841
+
842
+ def quantize(self, weight_bit_width: int):
843
+ from .quantization import quantize
844
+ quantize(self.encoder, weight_bit_width)
845
+ return self
846
+
847
+
848
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
849
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
850
+ super().__init__(config)
851
+
852
+ self.max_sequence_length = config.max_length
853
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
854
+ self.config = config
855
+ self.quantized = False
856
+
857
+ if self.config.quantization_bit:
858
+ self.quantize(self.config.quantization_bit, empty_init=True)
859
+
860
+ def _update_model_kwargs_for_generation(
861
+ self,
862
+ outputs: ModelOutput,
863
+ model_kwargs: Dict[str, Any],
864
+ is_encoder_decoder: bool = False,
865
+ standardize_cache_format: bool = False,
866
+ ) -> Dict[str, Any]:
867
+ # update past_key_values
868
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
869
+ outputs, standardize_cache_format=standardize_cache_format
870
+ )
871
+
872
+ # update attention mask
873
+ if "attention_mask" in model_kwargs:
874
+ attention_mask = model_kwargs["attention_mask"]
875
+ model_kwargs["attention_mask"] = torch.cat(
876
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
877
+ )
878
+
879
+ # update position ids
880
+ if "position_ids" in model_kwargs:
881
+ position_ids = model_kwargs["position_ids"]
882
+ new_position_id = position_ids[..., -1:].clone()
883
+ new_position_id += 1
884
+ model_kwargs["position_ids"] = torch.cat(
885
+ [position_ids, new_position_id], dim=-1
886
+ )
887
+
888
+ model_kwargs["is_first_forward"] = False
889
+ return model_kwargs
890
+
891
+ def prepare_inputs_for_generation(
892
+ self,
893
+ input_ids: torch.LongTensor,
894
+ past_key_values: Optional[torch.Tensor] = None,
895
+ attention_mask: Optional[torch.Tensor] = None,
896
+ position_ids: Optional[torch.Tensor] = None,
897
+ is_first_forward: bool = True,
898
+ **kwargs
899
+ ) -> dict:
900
+ # only last token for input_ids if past is not None
901
+ if position_ids is None:
902
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
903
+ if not is_first_forward:
904
+ position_ids = position_ids[..., -1:]
905
+ input_ids = input_ids[:, -1:]
906
+ return {
907
+ "input_ids": input_ids,
908
+ "past_key_values": past_key_values,
909
+ "position_ids": position_ids,
910
+ "attention_mask": attention_mask,
911
+ "return_last_logit": True
912
+ }
913
+
914
+ def forward(
915
+ self,
916
+ input_ids: Optional[torch.Tensor] = None,
917
+ position_ids: Optional[torch.Tensor] = None,
918
+ attention_mask: Optional[torch.Tensor] = None,
919
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
920
+ inputs_embeds: Optional[torch.Tensor] = None,
921
+ labels: Optional[torch.Tensor] = None,
922
+ use_cache: Optional[bool] = None,
923
+ output_attentions: Optional[bool] = None,
924
+ output_hidden_states: Optional[bool] = None,
925
+ return_dict: Optional[bool] = None,
926
+ return_last_logit: Optional[bool] = False,
927
+ ):
928
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
929
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
930
+
931
+ transformer_outputs = self.transformer(
932
+ input_ids=input_ids,
933
+ position_ids=position_ids,
934
+ attention_mask=attention_mask,
935
+ past_key_values=past_key_values,
936
+ inputs_embeds=inputs_embeds,
937
+ use_cache=use_cache,
938
+ output_hidden_states=output_hidden_states,
939
+ return_dict=return_dict,
940
+ )
941
+
942
+ hidden_states = transformer_outputs[0]
943
+ if return_last_logit:
944
+ hidden_states = hidden_states[-1:]
945
+ lm_logits = self.transformer.output_layer(hidden_states)
946
+ lm_logits = lm_logits.transpose(0, 1).contiguous()
947
+
948
+ loss = None
949
+ if labels is not None:
950
+ lm_logits = lm_logits.to(torch.float32)
951
+
952
+ # Shift so that tokens < n predict n
953
+ shift_logits = lm_logits[..., :-1, :].contiguous()
954
+ shift_labels = labels[..., 1:].contiguous()
955
+ # Flatten the tokens
956
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
957
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
958
+
959
+ lm_logits = lm_logits.to(hidden_states.dtype)
960
+ loss = loss.to(hidden_states.dtype)
961
+
962
+ if not return_dict:
963
+ output = (lm_logits,) + transformer_outputs[1:]
964
+ return ((loss,) + output) if loss is not None else output
965
+
966
+ return CausalLMOutputWithPast(
967
+ loss=loss,
968
+ logits=lm_logits,
969
+ past_key_values=transformer_outputs.past_key_values,
970
+ hidden_states=transformer_outputs.hidden_states,
971
+ attentions=transformer_outputs.attentions,
972
+ )
973
+
974
+ @staticmethod
975
+ def _reorder_cache(
976
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
977
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
978
+ """
979
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
980
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
981
+ beam_idx at every generation step.
982
+
983
+ Output shares the same memory storage as `past`.
984
+ """
985
+ return tuple(
986
+ (
987
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
988
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
989
+ )
990
+ for layer_past in past
991
+ )
992
+
993
+ def process_response(self, response):
994
+ response = response.strip()
995
+ response = response.replace("[[训练时间]]", "2023年")
996
+ return response
997
+
998
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
999
+ prompt = tokenizer.build_prompt(query, history=history)
1000
+ inputs = tokenizer([prompt], return_tensors="pt")
1001
+ inputs = inputs.to(self.device)
1002
+ return inputs
1003
+
1004
+ def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
1005
+ if history:
1006
+ prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
1007
+ input_ids = tokenizer.encode(prompt, add_special_tokens=False)
1008
+ input_ids = input_ids[1:]
1009
+ inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
1010
+ else:
1011
+ prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
1012
+ inputs = tokenizer([prompt], return_tensors="pt")
1013
+ inputs = inputs.to(self.device)
1014
+ return inputs
1015
+
1016
+ @torch.no_grad()
1017
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
1018
+ do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
1019
+ if history is None:
1020
+ history = []
1021
+ if logits_processor is None:
1022
+ logits_processor = LogitsProcessorList()
1023
+ logits_processor.append(InvalidScoreLogitsProcessor())
1024
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1025
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1026
+ inputs = self.build_inputs(tokenizer, query, history=history)
1027
+ outputs = self.generate(**inputs, **gen_kwargs)
1028
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1029
+ response = tokenizer.decode(outputs)
1030
+ response = self.process_response(response)
1031
+ history = history + [(query, response)]
1032
+ return response, history
1033
+
1034
+ @torch.no_grad()
1035
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
1036
+ max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1037
+ return_past_key_values=False, **kwargs):
1038
+ if history is None:
1039
+ history = []
1040
+ if logits_processor is None:
1041
+ logits_processor = LogitsProcessorList()
1042
+ logits_processor.append(InvalidScoreLogitsProcessor())
1043
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1044
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1045
+ if past_key_values is None and not return_past_key_values:
1046
+ inputs = self.build_inputs(tokenizer, query, history=history)
1047
+ else:
1048
+ inputs = self.build_stream_inputs(tokenizer, query, history=history)
1049
+ if past_key_values is not None:
1050
+ past_length = past_key_values[0][0].shape[0]
1051
+ if self.transformer.pre_seq_len is not None:
1052
+ past_length -= self.transformer.pre_seq_len
1053
+ inputs.position_ids += past_length
1054
+ attention_mask = inputs.attention_mask
1055
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1056
+ inputs['attention_mask'] = attention_mask
1057
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1058
+ return_past_key_values=return_past_key_values, **gen_kwargs):
1059
+ if return_past_key_values:
1060
+ outputs, past_key_values = outputs
1061
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1062
+ response = tokenizer.decode(outputs)
1063
+ if response and response[-1] != "�":
1064
+ response = self.process_response(response)
1065
+ new_history = history + [(query, response)]
1066
+ if return_past_key_values:
1067
+ yield response, new_history, past_key_values
1068
+ else:
1069
+ yield response, new_history
1070
+
1071
+ @torch.no_grad()
1072
+ def stream_generate(
1073
+ self,
1074
+ input_ids,
1075
+ generation_config: Optional[GenerationConfig] = None,
1076
+ logits_processor: Optional[LogitsProcessorList] = None,
1077
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1078
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1079
+ return_past_key_values=False,
1080
+ **kwargs,
1081
+ ):
1082
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1083
+
1084
+ if generation_config is None:
1085
+ generation_config = self.generation_config
1086
+ generation_config = copy.deepcopy(generation_config)
1087
+ model_kwargs = generation_config.update(**kwargs)
1088
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1089
+
1090
+ if isinstance(eos_token_id, int):
1091
+ eos_token_id = [eos_token_id]
1092
+
1093
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1094
+ if has_default_max_length and generation_config.max_new_tokens is None:
1095
+ warnings.warn(
1096
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1097
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1098
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1099
+ UserWarning,
1100
+ )
1101
+ elif generation_config.max_new_tokens is not None:
1102
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1103
+ if not has_default_max_length:
1104
+ logger.warn(
1105
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1106
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1107
+ "Please refer to the documentation for more information. "
1108
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1109
+ UserWarning,
1110
+ )
1111
+
1112
+ if input_ids_seq_length >= generation_config.max_length:
1113
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1114
+ logger.warning(
1115
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1116
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1117
+ " increasing `max_new_tokens`."
1118
+ )
1119
+
1120
+ # 2. Set generation parameters if not already defined
1121
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1122
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1123
+
1124
+ logits_processor = self._get_logits_processor(
1125
+ generation_config=generation_config,
1126
+ input_ids_seq_length=input_ids_seq_length,
1127
+ encoder_input_ids=input_ids,
1128
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1129
+ logits_processor=logits_processor,
1130
+ )
1131
+
1132
+ stopping_criteria = self._get_stopping_criteria(
1133
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1134
+ )
1135
+ logits_warper = self._get_logits_warper(generation_config)
1136
+
1137
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1138
+ scores = None
1139
+ while True:
1140
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1141
+ # forward pass to get next token
1142
+ outputs = self(
1143
+ **model_inputs,
1144
+ return_dict=True,
1145
+ output_attentions=False,
1146
+ output_hidden_states=False,
1147
+ )
1148
+
1149
+ next_token_logits = outputs.logits[:, -1, :]
1150
+
1151
+ # pre-process distribution
1152
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1153
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1154
+
1155
+ # sample
1156
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1157
+ if generation_config.do_sample:
1158
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1159
+ else:
1160
+ next_tokens = torch.argmax(probs, dim=-1)
1161
+
1162
+ # update generated ids, model inputs, and length for next step
1163
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1164
+ model_kwargs = self._update_model_kwargs_for_generation(
1165
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1166
+ )
1167
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1168
+ if return_past_key_values:
1169
+ yield input_ids, outputs.past_key_values
1170
+ else:
1171
+ yield input_ids
1172
+ # stop when each sentence is finished, or if we exceed the maximum length
1173
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1174
+ break
1175
+
1176
+ def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
1177
+ if bits == 0:
1178
+ return
1179
+
1180
+ from .quantization import quantize
1181
+
1182
+ if self.quantized:
1183
+ logger.info("Already quantized.")
1184
+ return self
1185
+
1186
+ self.quantized = True
1187
+
1188
+ self.config.quantization_bit = bits
1189
+
1190
+ self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
1191
+ **kwargs)
1192
+ return self
quantization.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bz2
2
+ import torch
3
+ import base64
4
+ import ctypes
5
+ import os
6
+ import sys
7
+ import traceback
8
+
9
+ from torch.nn.parameter import Parameter
10
+ from transformers.utils import logging
11
+
12
+ from typing import List
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+ try:
17
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
18
+
19
+
20
+ class Kernel:
21
+ def __init__(self, code: bytes, function_names: List[str]):
22
+ self.code = code
23
+ self._function_names = function_names
24
+ self._cmodule = LazyKernelCModule(self.code)
25
+
26
+ for name in self._function_names:
27
+ setattr(self, name, KernelFunction(self._cmodule, name))
28
+
29
+
30
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
31
+
32
+ kernels = Kernel(
33
+ bz2.decompress(base64.b64decode(quantization_code)),
34
+ [
35
+ "int4WeightCompression",
36
+ "int4WeightExtractionFloat",
37
+ "int4WeightExtractionHalf",
38
+ "int8WeightExtractionFloat",
39
+ "int8WeightExtractionHalf",
40
+ ],
41
+ )
42
+ except Exception as exception:
43
+ kernels = None
44
+ logger.warning("Failed to load cpm_kernels:" + str(exception))
45
+
46
+
47
+ class W8A16Linear(torch.autograd.Function):
48
+ @staticmethod
49
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
50
+ ctx.inp_shape = inp.size()
51
+ ctx.weight_bit_width = weight_bit_width
52
+ out_features = quant_w.size(0)
53
+ inp = inp.contiguous().view(-1, inp.size(-1))
54
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
55
+ ctx.weight_shape = weight.size()
56
+ output = inp.mm(weight.t())
57
+ ctx.save_for_backward(inp, quant_w, scale_w)
58
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
59
+
60
+ @staticmethod
61
+ def backward(ctx, grad_output: torch.Tensor):
62
+ inp, quant_w, scale_w = ctx.saved_tensors
63
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
64
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
65
+ grad_input = grad_output.mm(weight)
66
+ grad_weight = grad_output.t().mm(inp)
67
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
68
+
69
+
70
+ default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
71
+ default_cpu_kernel_code = "QlpoOTFBWSZTWXLbSoQAAgzbgERwQXxmTwAAr/ff3kABt0Q2oRVT0hpo9RtEAAAAyBEiSQ9EGjQGQAAAwANGhowjJoNGmgMEUplMTNSMJ5TQaDJpsoMyRMj8P4mZzFSVVwqSXG8GG7MlVwiToYEQwVD7noBxMhNfkeZYtYFtbgOBUSIGtIQjhNHCEnPJsadhb3yBmRIOD3TeAtNLSaU5GgvKUBWSNuuOIHmVt0YhW6rsmDMDUjeUJGJ64R1Jm5lrh0Aa0tKjhFwPdWcGogxLDSXPWQUWTM8Sd3Qz1HMYNxx3HMeiNqNo4jeRDEfZ3gUSHIcU/heomq0vEzL1Msz5KKGxH8FrNOYw3KaxdqaEmNHYMxJFgQbR0DyRknL2L4kwUSxKRdhjRpEtUqilVfggFL1klaMS3PPRDfNqbBOPWO7m4JTVGhS9QTBDDJaEbLbrUQNB+IpJSKQbG5SZZ5gkwJEhJ3aYKJipZ/i7kinChIOW2lQg"
72
+ default_cpu_parallel_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
73
+ "quantization_kernels_parallel.c")
74
+ default_cpu_parallel_kernel_code = "QlpoOTFBWSZTWUzax5EAALXbgERwSX1mTwAAr/ff3kACNyXUbZYwBpoaNGIyAaADQwRSaVP9QoMg0A2oAPU0AEUkU9GaaKMaQB6gA09T1ARRKnpk0niaJkaaNDJ6g0DTIKVKfZ/g6v1Kem5LJLa0WmkukkuCIHUqWbtJGJMsCSQFiPEIYHgBIZDzR8R6REbYxIqD2Cu7lMkFoPu6LmHeOAy0GF83Tc40jgmTs4HnCe60QfJa2bDBZ0Y1lhgbiZjW8SNsAKCk42UOEdjWN3KoiCIYeQUCCKWIyHewhtSoInLKSG22l4jKM2ZDCVKtBm3OTYBl3jsVqMImtj7PQw7xKxLXQzwgJaPPgW1fRhrvPJICl4YFDYfNbkbBh5JDgrazFml50xEQQwQUjxNwE0IDSofLzSg7UNVKn+Rr1KErzBHUxBqdHRlXzqYsIa5K9Y0UuE2ugw3g5KYofm7AaGNTzJSMhcchhxdaU4JZ0F1UNgQ8XcGDguypqYza8yFaEoGgNRcLej+g2t0feGKFE5OY2PFluQ3q4HgycxlfvzHqo0KcM0JI8OKXtzayJFgsqC1NdUQVu8rChnA6FO3MFyGOoC9KO8ITPpYM5pRqTlczFkLES/4u5IpwoSCZtY8i"
75
+
76
+
77
+ class CPUKernel:
78
+ def __init__(self, kernel_file="", source_code=default_cpu_kernel_code_path, compile_parallel_kernel=None,
79
+ parallel_num=None):
80
+ self.load = False
81
+ self.int8WeightExtractionFloat = None
82
+ self.int4WeightExtractionFloat = None
83
+ self.int4WeightCompression = None
84
+ self.SetNumThreads = lambda x: x
85
+
86
+ try:
87
+ if not os.path.exists(default_cpu_kernel_code_path):
88
+ with open(default_cpu_kernel_code_path, "w", encoding="utf-8") as file:
89
+ code = default_cpu_kernel_code
90
+ cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
91
+ file.write(cpu_quantization_code)
92
+
93
+ if not os.path.exists(default_cpu_parallel_kernel_code_path):
94
+ with open(default_cpu_parallel_kernel_code_path, "w", encoding="utf-8") as file:
95
+ code = default_cpu_parallel_kernel_code
96
+ cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
97
+ file.write(cpu_quantization_code)
98
+
99
+ except Exception:
100
+ logger.warning("Error when generating default cpu kernel code.")
101
+
102
+ if compile_parallel_kernel is None:
103
+ compile_parallel_kernel = bool(int(os.cpu_count()) >= 4)
104
+
105
+ if compile_parallel_kernel and source_code == default_cpu_kernel_code_path:
106
+ source_code = default_cpu_parallel_kernel_code_path
107
+
108
+ kernels = None
109
+
110
+ if (not kernel_file) or (not os.path.exists(kernel_file)):
111
+ try:
112
+ if os.path.exists(source_code):
113
+ kernel_file = source_code[:-2] + ".so"
114
+
115
+ if compile_parallel_kernel:
116
+ if sys.platform != 'darwin':
117
+ compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
118
+ source_code, kernel_file)
119
+ else:
120
+ compile_command = "clang -O3 -fPIC -pthread -Xclang -fopenmp -lomp -std=c99 {} -shared -o {}".format(
121
+ source_code, kernel_file)
122
+ exit_state = os.system(compile_command)
123
+ if not exit_state:
124
+ try:
125
+ kernels = ctypes.cdll.LoadLibrary(kernel_file)
126
+ except:
127
+ logger.warning(
128
+ f"Load parallel cpu kernel failed {kernel_file}: {traceback.format_exc()}")
129
+ else:
130
+ logger.warning(f"Compile parallel cpu kernel {compile_command} failed.")
131
+
132
+ if kernels is None: # adjust config, use default cpu kernel
133
+ compile_parallel_kernel = False
134
+ source_code = default_cpu_kernel_code_path
135
+ kernel_file = source_code[:-2] + ".so"
136
+
137
+ if kernels is None:
138
+ compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
139
+ exit_state = os.system(compile_command)
140
+ if not exit_state:
141
+ try:
142
+ kernels = ctypes.cdll.LoadLibrary(kernel_file)
143
+ except:
144
+ logger.warning(f"Load cpu kernel {kernel_file} failed: {traceback.format_exc()}")
145
+ else:
146
+ logger.warning(f"Compile cpu kernel {compile_command} failed.")
147
+ else:
148
+ logger.warning("Kernel source code not found.")
149
+ return
150
+ except:
151
+ logger.warning(f"Failed to build cpu kernel: {traceback.format_exc()}")
152
+ return
153
+ else:
154
+ try:
155
+ kernels = ctypes.cdll.LoadLibrary(kernel_file)
156
+ except:
157
+ logger.warning(f"Load custom cpu kernel {kernel_file} failed: {traceback.format_exc()}")
158
+
159
+ if kernels is not None:
160
+ self.int8WeightExtractionFloat = kernels.extract_int8_weight_to_float
161
+ self.int4WeightExtractionFloat = kernels.extract_int4_weight_to_float
162
+ self.int4WeightCompression = kernels.compress_int4_weight
163
+ if compile_parallel_kernel:
164
+ try:
165
+ self.SetNumThreads = kernels.set_num_threads
166
+ except:
167
+ logger.warning("No set_num_threads() found in kernel.")
168
+ self.load = True
169
+
170
+ if compile_parallel_kernel:
171
+ if parallel_num is None:
172
+ parallel_num = max(os.cpu_count(), 1)
173
+ self.SetNumThreads(parallel_num)
174
+
175
+ self.parallel_num = parallel_num
176
+
177
+
178
+ cpu_kernels = CPUKernel()
179
+
180
+
181
+ def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int,
182
+ quantization_cache=None):
183
+ """extract weight on cpu to float32"""
184
+ if source_bit_width == 8:
185
+ func = cpu_kernels.int8WeightExtractionFloat
186
+ elif source_bit_width == 4:
187
+ func = cpu_kernels.int4WeightExtractionFloat
188
+ else:
189
+ assert False, "Unsupported bit-width"
190
+
191
+ n, m = weight.size(0), weight.size(1)
192
+
193
+ if quantization_cache is not None:
194
+ out = quantization_cache
195
+ func(
196
+ ctypes.c_void_p(weight.data_ptr()),
197
+ ctypes.c_void_p(scale_list.data_ptr()),
198
+ ctypes.c_void_p(out.data_ptr()),
199
+ ctypes.c_int32(n),
200
+ ctypes.c_int32(m)
201
+ )
202
+ return out.tensor
203
+ else:
204
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.float, device="cpu")
205
+ func(
206
+ ctypes.c_void_p(weight.data_ptr()),
207
+ ctypes.c_void_p(scale_list.data_ptr()),
208
+ ctypes.c_void_p(out.data_ptr()),
209
+ ctypes.c_int32(n),
210
+ ctypes.c_int32(m)
211
+ )
212
+ return out
213
+
214
+
215
+ class W8A16LinearCPU(torch.autograd.Function):
216
+ @staticmethod
217
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width,
218
+ quantization_cache=None):
219
+ ctx.inp_shape = inp.size()
220
+ ctx.weight_bit_width = weight_bit_width
221
+ out_features = quant_w.size(0)
222
+ inp = inp.contiguous().view(-1, inp.size(-1))
223
+ weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
224
+ ctx.weight_shape = weight.size()
225
+ output = inp.mm(weight.t())
226
+ ctx.save_for_backward(inp, quant_w, scale_w)
227
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
228
+
229
+ @staticmethod
230
+ def backward(ctx, grad_output: torch.Tensor):
231
+ inp, quant_w, scale_w = ctx.saved_tensors
232
+ weight = extract_weight_to_float(quant_w, scale_w, ctx.weight_bit_width)
233
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
234
+ grad_input = grad_output.mm(weight)
235
+ grad_weight = grad_output.t().mm(inp)
236
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
237
+
238
+
239
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
240
+ with torch.cuda.device(weight.device):
241
+ n, m = weight.size(0), weight.size(1)
242
+ assert m % 2 == 0
243
+ m = m // 2
244
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
245
+ stream = torch.cuda.current_stream()
246
+
247
+ gridDim = (n, 1, 1)
248
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
249
+
250
+ kernels.int4WeightCompression(
251
+ gridDim,
252
+ blockDim,
253
+ 0,
254
+ stream,
255
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
256
+ )
257
+ return out
258
+
259
+
260
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
261
+ assert scale_list.dtype in [torch.half, torch.bfloat16]
262
+ assert weight.dtype in [torch.int8]
263
+ if source_bit_width == 8:
264
+ return weight.to(scale_list.dtype) * scale_list[:, None]
265
+ elif source_bit_width == 4:
266
+ func = (
267
+ kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
268
+ )
269
+ else:
270
+ assert False, "Unsupported bit-width"
271
+
272
+ with torch.cuda.device(weight.device):
273
+ n, m = weight.size(0), weight.size(1)
274
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
275
+ stream = torch.cuda.current_stream()
276
+
277
+ gridDim = (n, 1, 1)
278
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
279
+
280
+ func(
281
+ gridDim,
282
+ blockDim,
283
+ 0,
284
+ stream,
285
+ [
286
+ ctypes.c_void_p(weight.data_ptr()),
287
+ ctypes.c_void_p(scale_list.data_ptr()),
288
+ ctypes.c_void_p(out.data_ptr()),
289
+ ctypes.c_int32(n),
290
+ ctypes.c_int32(m),
291
+ ],
292
+ )
293
+ return out
294
+
295
+
296
+ class QuantizedLinear(torch.nn.Module):
297
+ def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
298
+ **kwargs):
299
+ super().__init__()
300
+ self.weight_bit_width = weight_bit_width
301
+
302
+ shape = weight.shape
303
+
304
+ if weight is None or empty_init:
305
+ self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
306
+ self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
307
+ else:
308
+ weight = weight.to(torch.cuda.current_device())
309
+ self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
310
+ self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
311
+ if weight_bit_width == 4:
312
+ self.weight = compress_int4_weight(self.weight)
313
+
314
+ self.weight = Parameter(self.weight.to(device), requires_grad=False)
315
+ self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
316
+ self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
317
+
318
+ def forward(self, input):
319
+ if self.weight.device == torch.device("cpu"):
320
+ output = W8A16LinearCPU.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
321
+ else:
322
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
323
+ if self.bias is not None:
324
+ output = output + self.bias
325
+ return output
326
+
327
+
328
+ def quantize(model, weight_bit_width, empty_init=False, device=None):
329
+ """Replace fp16 linear with quantized linear"""
330
+ for layer in model.layers:
331
+ layer.self_attention.query_key_value = QuantizedLinear(
332
+ weight_bit_width=weight_bit_width,
333
+ weight=layer.self_attention.query_key_value.weight,
334
+ bias=layer.self_attention.query_key_value.bias,
335
+ dtype=layer.self_attention.query_key_value.weight.dtype,
336
+ device=layer.self_attention.query_key_value.weight.device if device is None else device,
337
+ empty_init=empty_init
338
+ )
339
+ layer.self_attention.dense = QuantizedLinear(
340
+ weight_bit_width=weight_bit_width,
341
+ weight=layer.self_attention.dense.weight,
342
+ bias=layer.self_attention.dense.bias,
343
+ dtype=layer.self_attention.dense.weight.dtype,
344
+ device=layer.self_attention.dense.weight.device if device is None else device,
345
+ empty_init=empty_init
346
+ )
347
+ layer.mlp.dense_h_to_4h = QuantizedLinear(
348
+ weight_bit_width=weight_bit_width,
349
+ weight=layer.mlp.dense_h_to_4h.weight,
350
+ bias=layer.mlp.dense_h_to_4h.bias,
351
+ dtype=layer.mlp.dense_h_to_4h.weight.dtype,
352
+ device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
353
+ empty_init=empty_init
354
+ )
355
+ layer.mlp.dense_4h_to_h = QuantizedLinear(
356
+ weight_bit_width=weight_bit_width,
357
+ weight=layer.mlp.dense_4h_to_h.weight,
358
+ bias=layer.mlp.dense_4h_to_h.bias,
359
+ dtype=layer.mlp.dense_4h_to_h.weight.dtype,
360
+ device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
361
+ empty_init=empty_init
362
+ )
363
+
364
+ return model
tokenization_chatglm.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from typing import List, Optional, Union, Dict
4
+ from sentencepiece import SentencePieceProcessor
5
+ from transformers import PreTrainedTokenizer
6
+ from transformers.utils import logging, PaddingStrategy
7
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
8
+
9
+
10
+ class SPTokenizer:
11
+ def __init__(self, model_path: str):
12
+ # reload tokenizer
13
+ assert os.path.isfile(model_path), model_path
14
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
15
+
16
+ # BOS / EOS token IDs
17
+ self.n_words: int = self.sp_model.vocab_size()
18
+ self.bos_id: int = self.sp_model.bos_id()
19
+ self.eos_id: int = self.sp_model.eos_id()
20
+ self.pad_id: int = self.sp_model.unk_id()
21
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
22
+
23
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
24
+ self.special_tokens = {}
25
+ self.index_special_tokens = {}
26
+ for token in special_tokens:
27
+ self.special_tokens[token] = self.n_words
28
+ self.index_special_tokens[self.n_words] = token
29
+ self.n_words += 1
30
+
31
+ def tokenize(self, s: str):
32
+ return self.sp_model.EncodeAsPieces(s)
33
+
34
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
35
+ assert type(s) is str
36
+ t = self.sp_model.encode(s)
37
+ if bos:
38
+ t = [self.bos_id] + t
39
+ if eos:
40
+ t = t + [self.eos_id]
41
+ return t
42
+
43
+ def decode(self, t: List[int]) -> str:
44
+ return self.sp_model.decode(t)
45
+
46
+ def decode_tokens(self, tokens: List[str]) -> str:
47
+ text = self.sp_model.DecodePieces(tokens)
48
+ return text
49
+
50
+ def convert_token_to_id(self, token):
51
+ """ Converts a token (str) in an id using the vocab. """
52
+ if token in self.special_tokens:
53
+ return self.special_tokens[token]
54
+ return self.sp_model.PieceToId(token)
55
+
56
+ def convert_id_to_token(self, index):
57
+ """Converts an index (integer) in a token (str) using the vocab."""
58
+ if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
59
+ return ""
60
+ return self.sp_model.IdToPiece(index)
61
+
62
+
63
+ class ChatGLMTokenizer(PreTrainedTokenizer):
64
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
65
+
66
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
67
+
68
+ def __init__(self, vocab_file, padding_side="left", **kwargs):
69
+ super().__init__(padding_side=padding_side, **kwargs)
70
+ self.name = "GLMTokenizer"
71
+
72
+ self.vocab_file = vocab_file
73
+ self.tokenizer = SPTokenizer(vocab_file)
74
+ self.special_tokens = {
75
+ "<bos>": self.tokenizer.bos_id,
76
+ "<eos>": self.tokenizer.eos_id,
77
+ "<pad>": self.tokenizer.pad_id
78
+ }
79
+
80
+ def get_command(self, token):
81
+ if token in self.special_tokens:
82
+ return self.special_tokens[token]
83
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
84
+ return self.tokenizer.special_tokens[token]
85
+
86
+ @property
87
+ def pad_token(self) -> str:
88
+ return "<unk>"
89
+
90
+ @property
91
+ def pad_token_id(self):
92
+ return self.get_command("<pad>")
93
+
94
+ @property
95
+ def eos_token(self) -> str:
96
+ return "</s>"
97
+
98
+ @property
99
+ def eos_token_id(self):
100
+ return self.get_command("<eos>")
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ return self.tokenizer.n_words
105
+
106
+ def get_vocab(self):
107
+ """ Returns vocab as a dict """
108
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text, **kwargs):
113
+ return self.tokenizer.tokenize(text)
114
+
115
+ def _convert_token_to_id(self, token):
116
+ """ Converts a token (str) in an id using the vocab. """
117
+ return self.tokenizer.convert_token_to_id(token)
118
+
119
+ def _convert_id_to_token(self, index):
120
+ """Converts an index (integer) in a token (str) using the vocab."""
121
+ return self.tokenizer.convert_id_to_token(index)
122
+
123
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
124
+ return self.tokenizer.decode_tokens(tokens)
125
+
126
+ def save_vocabulary(self, save_directory, filename_prefix=None):
127
+ """
128
+ Save the vocabulary and special tokens file to a directory.
129
+
130
+ Args:
131
+ save_directory (`str`):
132
+ The directory in which to save the vocabulary.
133
+ filename_prefix (`str`, *optional*):
134
+ An optional prefix to add to the named of the saved files.
135
+
136
+ Returns:
137
+ `Tuple(str)`: Paths to the files saved.
138
+ """
139
+ if os.path.isdir(save_directory):
140
+ vocab_file = os.path.join(
141
+ save_directory, self.vocab_files_names["vocab_file"]
142
+ )
143
+ else:
144
+ vocab_file = save_directory
145
+
146
+ with open(self.vocab_file, 'rb') as fin:
147
+ proto_str = fin.read()
148
+
149
+ with open(vocab_file, "wb") as writer:
150
+ writer.write(proto_str)
151
+
152
+ return (vocab_file,)
153
+
154
+ def get_prefix_tokens(self):
155
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
156
+ return prefix_tokens
157
+
158
+ def build_prompt(self, query, history=None):
159
+ if history is None:
160
+ history = []
161
+ prompt = ""
162
+ for i, (old_query, response) in enumerate(history):
163
+ prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
164
+ prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
165
+ return prompt
166
+
167
+ def build_inputs_with_special_tokens(
168
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
169
+ ) -> List[int]:
170
+ """
171
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
172
+ adding special tokens. A BERT sequence has the following format:
173
+
174
+ - single sequence: `[CLS] X [SEP]`
175
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
176
+
177
+ Args:
178
+ token_ids_0 (`List[int]`):
179
+ List of IDs to which the special tokens will be added.
180
+ token_ids_1 (`List[int]`, *optional*):
181
+ Optional second list of IDs for sequence pairs.
182
+
183
+ Returns:
184
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
185
+ """
186
+ prefix_tokens = self.get_prefix_tokens()
187
+ token_ids_0 = prefix_tokens + token_ids_0
188
+ if token_ids_1 is not None:
189
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
190
+ return token_ids_0
191
+
192
+ def _pad(
193
+ self,
194
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
195
+ max_length: Optional[int] = None,
196
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
197
+ pad_to_multiple_of: Optional[int] = None,
198
+ return_attention_mask: Optional[bool] = None,
199
+ ) -> dict:
200
+ """
201
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
202
+
203
+ Args:
204
+ encoded_inputs:
205
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
206
+ max_length: maximum length of the returned list and optionally padding length (see below).
207
+ Will truncate by taking into account the special tokens.
208
+ padding_strategy: PaddingStrategy to use for padding.
209
+
210
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
211
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
212
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
213
+ The tokenizer padding sides are defined in self.padding_side:
214
+
215
+ - 'left': pads on the left of the sequences
216
+ - 'right': pads on the right of the sequences
217
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
218
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
219
+ `>= 7.5` (Volta).
220
+ return_attention_mask:
221
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
222
+ """
223
+ # Load from model defaults
224
+ assert self.padding_side == "left"
225
+
226
+ required_input = encoded_inputs[self.model_input_names[0]]
227
+ seq_length = len(required_input)
228
+
229
+ if padding_strategy == PaddingStrategy.LONGEST:
230
+ max_length = len(required_input)
231
+
232
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
233
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
234
+
235
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
236
+
237
+ # Initialize attention mask if not present.
238
+ if "attention_mask" not in encoded_inputs:
239
+ encoded_inputs["attention_mask"] = [1] * seq_length
240
+
241
+ if "position_ids" not in encoded_inputs:
242
+ encoded_inputs["position_ids"] = list(range(seq_length))
243
+
244
+ if needs_to_be_padded:
245
+ difference = max_length - len(required_input)
246
+
247
+ if "attention_mask" in encoded_inputs:
248
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
249
+ if "position_ids" in encoded_inputs:
250
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
251
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
252
+
253
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
3
+ size 1018370
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "THUDM/chatglm-6b",
3
+ "remove_space": false,
4
+ "do_lower_case": false,
5
+ "tokenizer_class": "ChatGLMTokenizer",
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ "tokenization_chatglm.ChatGLMTokenizer",
9
+ null
10
+ ]
11
+ }
12
+ }