--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: chinese-english-whisper-finetune-take2 results: [] --- # chinese-english-whisper-finetune-take2 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1626 - Wer: 82.7131 - Mer: 68.6675 - Cer: 28.2875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Cer | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:-------:| | 0.1649 | 1.0811 | 200 | 1.2727 | 107.8031 | 70.1080 | 46.0846 | | 0.1139 | 2.1622 | 400 | 1.2402 | 100.4802 | 71.9088 | 35.4459 | | 0.0526 | 3.2432 | 600 | 1.2208 | 88.4754 | 69.0276 | 33.3300 | | 0.0261 | 4.3243 | 800 | 1.1673 | 81.7527 | 66.9868 | 28.8709 | | 0.0086 | 5.4054 | 1000 | 1.1626 | 82.7131 | 68.6675 | 28.2875 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1