shiyi-li commited on
Commit
e1d219e
·
verified ·
1 Parent(s): fbef8f0

Upload BirdAST_Seq.py

Browse files
Files changed (1) hide show
  1. BirdAST_Seq.py +185 -0
BirdAST_Seq.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ import transformers
6
+ from transformers import ASTConfig, ASTFeatureExtractor, ASTModel
7
+
8
+ BirdAST_FEATURE_EXTRACTOR = ASTFeatureExtractor()
9
+ DEFAULT_SR = 16_000
10
+ DEFAULT_BACKBONE = "MIT/ast-finetuned-audioset-10-10-0.4593"
11
+ DEFAULT_N_CLASSES = 728
12
+ DEFAULT_ACTIVATION = "silu"
13
+ DEFAULT_N_MLP_LAYERS = 1
14
+
15
+
16
+ def birdast_seq_preprocess(audio_array, sr=DEFAULT_SR):
17
+ """
18
+ Preprocess audio array for BirdAST model
19
+ audio_array: np.array, audio array of the recording, shape (n_samples,) Note: The audio array should be normalized to [-1, 1]
20
+ sr: int, sampling rate of the audio array (default: 16_000)
21
+
22
+ Note:
23
+ 1. The audio array should be normalized to [-1, 1].
24
+ 2. The audio length should be 10 seconds (or 10.24 seconds). Longer audio will be truncated.
25
+ """
26
+ # Extract features
27
+ features = BirdAST_FEATURE_EXTRACTOR(audio_array, sampling_rate=sr, padding="max_length", return_tensors="pt")
28
+
29
+ # Convert to PyTorch tensor
30
+ spectrogram = torch.tensor(features['input_values']).squeeze(0)
31
+
32
+ return spectrogram
33
+
34
+
35
+ def birdast_seq_inference(
36
+ model_weights,
37
+ spectrogram,
38
+ device = 'cpu',
39
+ backbone_name=DEFAULT_BACKBONE,
40
+ n_classes=DEFAULT_N_CLASSES,
41
+ activation=DEFAULT_ACTIVATION,
42
+ n_mlp_layers=DEFAULT_N_MLP_LAYERS
43
+ ):
44
+
45
+ """
46
+ Perform inference on BirdAST model
47
+ model_weights: list, list of model weights
48
+ spectrogram: torch.Tensor, spectrogram tensor, shape (batch_size, n_frames, n_mels,)
49
+ device: str, device to run inference (default: 'cpu')
50
+ backbone_name: str, name of the backbone model (default: 'MIT/ast-finetuned-audioset-10-10-0.4593')
51
+ n_classes: int, number of classes (default: 728)
52
+ activation: str, activation function (default: 'silu')
53
+ n_mlp_layers: int, number of MLP layers (default: 1)
54
+
55
+ Returns:
56
+ predictions: np.array, array of predictions, shape (n_models, batch_size, n_classes)
57
+ """
58
+
59
+ model = BirdAST(
60
+ backbone_name=backbone_name,
61
+ n_classes=n_classes,
62
+ n_mlp_layers=n_mlp_layers,
63
+ activation=activation
64
+ )
65
+
66
+ predict_collects = []
67
+
68
+ for _weight in model_weights:
69
+ model.load_state_dict(torch.load(_weight, map_location=device))
70
+ model.to(device)
71
+ model.eval()
72
+
73
+ with torch.no_grad():
74
+ spectrogram = spectrogram.to(device)
75
+ output = model(spectrogram)
76
+ logits = output['logits']
77
+ predictions = F.softmax(logits, dim=1)
78
+ predict_collects.append(predictions)
79
+
80
+ if device == 'cuda':
81
+ predict_collects = [pred.cpu() for pred in predict_collects]
82
+
83
+ predict_collects = torch.stack(predict_collects).numpy()
84
+
85
+ return predict_collects
86
+
87
+
88
+ class SelfAttentionPooling(nn.Module):
89
+ """
90
+ Implementation of SelfAttentionPooling
91
+ Original Paper: Self-Attention Encoding and Pooling for Speaker Recognition
92
+ https://arxiv.org/pdf/2008.01077v1.pdf
93
+ """
94
+ def __init__(self, input_dim):
95
+ super(SelfAttentionPooling, self).__init__()
96
+ self.W = nn.Linear(input_dim, 1)
97
+ self.softmax = nn.Softmax(dim=1)
98
+
99
+ def forward(self, batch_rep):
100
+ """
101
+ input:
102
+ batch_rep : size (N, T, H), N: batch size, T: sequence length, H: Hidden dimension
103
+ attention_weight:
104
+ att_w : size (N, T, 1)
105
+ return:
106
+ utter_rep: size (N, H)
107
+ """
108
+ att_w = self.softmax(self.W(batch_rep).squeeze(-1)).unsqueeze(-1)
109
+ utter_rep = torch.sum(batch_rep * att_w, dim=1)
110
+
111
+ return utter_rep
112
+
113
+
114
+ class BirdAST(nn.Module):
115
+
116
+ def __init__(self, backbone_name, n_classes, n_mlp_layers=1, activation='silu'):
117
+ super(BirdAST, self).__init__()
118
+
119
+ # pre-trained backbone
120
+ backbone_config = ASTConfig.from_pretrained(backbone_name)
121
+ self.ast = ASTModel.from_pretrained(backbone_name, config=backbone_config)
122
+ self.hidden_size = backbone_config.hidden_size
123
+
124
+ # set activation functions
125
+ if activation == 'relu':
126
+ self.activation = nn.ReLU()
127
+ elif activation == 'silu':
128
+ self.activation = nn.SiLU()
129
+ elif activation == 'gelu':
130
+ self.activation = nn.GELU()
131
+ else:
132
+ raise ValueError("Unsupported activation function. Choose 'relu', 'silu' or 'gelu'")
133
+
134
+ #define self-attention pooling layer
135
+ self.sa_pool = SelfAttentionPooling(self.hidden_size)
136
+
137
+ # define MLP layers with activation
138
+ layers = []
139
+ for _ in range(n_mlp_layers):
140
+ layers.append(nn.Linear(self.hidden_size, self.hidden_size))
141
+ layers.append(self.activation)
142
+ layers.append(nn.Linear(self.hidden_size, n_classes))
143
+ self.mlp = nn.Sequential(*layers)
144
+
145
+ def forward(self, spectrogram):
146
+ # spectrogram: (batch_size, n_mels, n_frames)
147
+ # output: (batch_size, n_classes)
148
+
149
+ ast_output = self.ast(spectrogram, output_hidden_states=False)
150
+ hidden_state = ast_output.last_hidden_state
151
+ pool_output = self.sa_pool(hidden_state)
152
+ logits = self.mlp(pool_output)
153
+
154
+ return {'logits': logits}
155
+
156
+
157
+
158
+ if __name__ == '__main__':
159
+
160
+ import numpy as np
161
+ import matplotlib.pyplot as plt
162
+
163
+ # example usage of BirdAST_Seq
164
+ # create random audio array
165
+ audio_array = np.random.randn(160_000 * 10)
166
+
167
+ # Preprocess audio array
168
+ spectrogram = birdast_seq_preprocess(audio_array)
169
+
170
+ model_weights_dir = '/workspace/voice_of_jungle/training_logs'
171
+
172
+ # Load model weights
173
+ model_weights = [f'{model_weights_dir}/BirdAST_SeqPool_GroupKFold_fold_{i}.pth' for i in range(5)]
174
+
175
+ # Perform inference
176
+ predictions = birdast_seq_inference(model_weights, spectrogram.unsqueeze(0))
177
+
178
+ # Plot predictions
179
+ fig, ax = plt.subplots()
180
+ for i, pred in enumerate(predictions):
181
+ ax.plot(pred[0], label=f'model_{i}')
182
+ ax.legend()
183
+ fig.savefig('test_BirdAST_Seq.png')
184
+
185
+ print("Inference completed successfully!")