shivasai824
commited on
Commit
·
f0c1d20
1
Parent(s):
1d0b5ea
Upload Yet_another_copy_of_Bert_Classifier_Sentiment_Analysis.ipynb
Browse files
Yet_another_copy_of_Bert_Classifier_Sentiment_Analysis.ipynb
ADDED
@@ -0,0 +1,1700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "Pr7vJKcKd4gr",
|
11 |
+
"outputId": "0f6cc3c7-24d7-49d0-dc9d-26bc45a64cdd"
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"output_type": "stream",
|
16 |
+
"name": "stdout",
|
17 |
+
"text": [
|
18 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.2)\n",
|
19 |
+
"Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.1.0+cu118)\n",
|
20 |
+
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)\n",
|
21 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n",
|
22 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
|
23 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.19.4)\n",
|
24 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
|
25 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
|
26 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
|
27 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
|
28 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
|
29 |
+
"Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.0)\n",
|
30 |
+
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.0)\n",
|
31 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
|
32 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.5.0)\n",
|
33 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.12)\n",
|
34 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.2.1)\n",
|
35 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.2)\n",
|
36 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2023.6.0)\n",
|
37 |
+
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.1.0)\n",
|
38 |
+
"Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.3)\n",
|
39 |
+
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2)\n",
|
40 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.2.0)\n",
|
41 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n",
|
42 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.3.post1)\n",
|
43 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n",
|
44 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n",
|
45 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
|
46 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
|
47 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
|
48 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n",
|
49 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"!pip install transformers torch scikit-learn pandas"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"source": [
|
60 |
+
"from google.colab import drive\n",
|
61 |
+
"drive.mount('/content/drive')"
|
62 |
+
],
|
63 |
+
"metadata": {
|
64 |
+
"colab": {
|
65 |
+
"base_uri": "https://localhost:8080/"
|
66 |
+
},
|
67 |
+
"id": "tH2zIdlZg5cF",
|
68 |
+
"outputId": "3490654d-09c5-4270-966d-6e5aba363443"
|
69 |
+
},
|
70 |
+
"execution_count": 2,
|
71 |
+
"outputs": [
|
72 |
+
{
|
73 |
+
"output_type": "stream",
|
74 |
+
"name": "stdout",
|
75 |
+
"text": [
|
76 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
77 |
+
]
|
78 |
+
}
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {
|
85 |
+
"id": "6L-RdDLGUDNv"
|
86 |
+
},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"import os\n",
|
90 |
+
"import torch\n",
|
91 |
+
"from torch import nn\n",
|
92 |
+
"from torch.utils.data import DataLoader, Dataset\n",
|
93 |
+
"from transformers import BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup\n",
|
94 |
+
"from sklearn.model_selection import train_test_split\n",
|
95 |
+
"from sklearn.metrics import accuracy_score, classification_report\n",
|
96 |
+
"import pandas as pd"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {
|
103 |
+
"id": "RlR2_pMvU5iF"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"data_file = \"/content/drive/MyDrive/Colab Notebooks/Twitter_Data.csv\"\n",
|
108 |
+
"df = pd.read_csv(data_file)\n",
|
109 |
+
"df.dropna(subset=['category'], inplace=True)\n",
|
110 |
+
"# df = df.drop(df[df['category'] == 0].index)\n",
|
111 |
+
"df['category']=[int(i) for i in df['category']]\n",
|
112 |
+
"df['category']=[2 if i==1 else i for i in df['category']]\n",
|
113 |
+
"df['category']=[1 if i==0 else i for i in df['category']]\n",
|
114 |
+
"df['category']=[0 if i==-1 else i for i in df['category']]\n",
|
115 |
+
"df['clean_text']=[str(i) for i in df['clean_text']]\n",
|
116 |
+
"df=df.sample(10000)\n",
|
117 |
+
"texts = df['clean_text'].tolist()\n",
|
118 |
+
"labels=df['category'].tolist()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"source": [
|
124 |
+
"df.shape"
|
125 |
+
],
|
126 |
+
"metadata": {
|
127 |
+
"colab": {
|
128 |
+
"base_uri": "https://localhost:8080/"
|
129 |
+
},
|
130 |
+
"id": "bGwnFQgjaAeO",
|
131 |
+
"outputId": "9a416f57-06b2-4c89-e16a-9d670260bb58"
|
132 |
+
},
|
133 |
+
"execution_count": null,
|
134 |
+
"outputs": [
|
135 |
+
{
|
136 |
+
"output_type": "execute_result",
|
137 |
+
"data": {
|
138 |
+
"text/plain": [
|
139 |
+
"(10000, 2)"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
"metadata": {},
|
143 |
+
"execution_count": 24
|
144 |
+
}
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"metadata": {
|
151 |
+
"colab": {
|
152 |
+
"base_uri": "https://localhost:8080/"
|
153 |
+
},
|
154 |
+
"id": "rQOk57pXU6gS",
|
155 |
+
"outputId": "e8e861fe-1fb9-4467-9718-8d497c72eff9"
|
156 |
+
},
|
157 |
+
"outputs": [
|
158 |
+
{
|
159 |
+
"output_type": "execute_result",
|
160 |
+
"data": {
|
161 |
+
"text/plain": [
|
162 |
+
"['mean seriously there should reality show how shameless one can become launched bjp contested bjp with narendra modi leading contestant nation will love going history elections guess all love touch drama']"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
"metadata": {},
|
166 |
+
"execution_count": 25
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"import random\n",
|
171 |
+
"random.choices(texts)"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": null,
|
177 |
+
"metadata": {
|
178 |
+
"colab": {
|
179 |
+
"base_uri": "https://localhost:8080/"
|
180 |
+
},
|
181 |
+
"id": "oiRLdjU8U9CG",
|
182 |
+
"outputId": "84e61a8b-2f0e-46e7-8650-a0f0febae12d"
|
183 |
+
},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"output_type": "execute_result",
|
187 |
+
"data": {
|
188 |
+
"text/plain": [
|
189 |
+
"[0, 0, 1, 1, 1]"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"metadata": {},
|
193 |
+
"execution_count": 26
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"source": [
|
197 |
+
"random.sample(labels,5)"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": null,
|
203 |
+
"metadata": {
|
204 |
+
"id": "pDcj8B3uVA9X"
|
205 |
+
},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"class TextClassificationDataset(Dataset):\n",
|
209 |
+
" def __init__(self, texts, labels, tokenizer, max_length):\n",
|
210 |
+
" self.texts = texts\n",
|
211 |
+
" self.labels = labels\n",
|
212 |
+
" self.tokenizer = tokenizer\n",
|
213 |
+
" self.max_length = max_length\n",
|
214 |
+
" def __len__(self):\n",
|
215 |
+
" return len(self.texts)\n",
|
216 |
+
" def __getitem__(self, idx):\n",
|
217 |
+
" text = self.texts[idx]\n",
|
218 |
+
" label = self.labels[idx]\n",
|
219 |
+
" encoding = self.tokenizer(text, return_tensors='pt', max_length=self.max_length, padding='max_length', truncation=True)\n",
|
220 |
+
" return {'input_ids': encoding['input_ids'].flatten(), 'attention_mask': encoding['attention_mask'].flatten(), 'label': torch.tensor(label)}\n"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": null,
|
226 |
+
"metadata": {
|
227 |
+
"id": "Uz3IzNx6VSoX"
|
228 |
+
},
|
229 |
+
"outputs": [],
|
230 |
+
"source": [
|
231 |
+
"class BERTClassifier(nn.Module):\n",
|
232 |
+
" def __init__(self, bert_model_name, num_classes):\n",
|
233 |
+
" super(BERTClassifier, self).__init__()\n",
|
234 |
+
" self.bert = BertModel.from_pretrained(bert_model_name)\n",
|
235 |
+
" self.dropout = nn.Dropout(0.1)\n",
|
236 |
+
" self.fc = nn.Linear(self.bert.config.hidden_size, num_classes)\n",
|
237 |
+
"\n",
|
238 |
+
" def forward(self, input_ids, attention_mask):\n",
|
239 |
+
" outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)\n",
|
240 |
+
" pooled_output = outputs.pooler_output\n",
|
241 |
+
" x = self.dropout(pooled_output)\n",
|
242 |
+
" logits = self.fc(x)\n",
|
243 |
+
" return logits"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"metadata": {
|
250 |
+
"id": "JoI_Ya8RVVBO"
|
251 |
+
},
|
252 |
+
"outputs": [],
|
253 |
+
"source": [
|
254 |
+
"def train(model, data_loader, optimizer, scheduler, device):\n",
|
255 |
+
" model.train()\n",
|
256 |
+
" for batch in data_loader:\n",
|
257 |
+
" optimizer.zero_grad()\n",
|
258 |
+
" input_ids = batch['input_ids'].to(device)\n",
|
259 |
+
" attention_mask = batch['attention_mask'].to(device)\n",
|
260 |
+
" labels = batch['label'].to(device)\n",
|
261 |
+
" outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n",
|
262 |
+
" loss = nn.CrossEntropyLoss()(outputs, labels)\n",
|
263 |
+
" loss.backward()\n",
|
264 |
+
" optimizer.step()\n",
|
265 |
+
" scheduler.step()"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"execution_count": null,
|
271 |
+
"metadata": {
|
272 |
+
"id": "E9nHv8IsVXJw"
|
273 |
+
},
|
274 |
+
"outputs": [],
|
275 |
+
"source": [
|
276 |
+
"def evaluate(model, data_loader, device):\n",
|
277 |
+
" model.eval()\n",
|
278 |
+
" predictions = []\n",
|
279 |
+
" actual_labels = []\n",
|
280 |
+
" with torch.no_grad():\n",
|
281 |
+
" for batch in data_loader:\n",
|
282 |
+
" input_ids = batch['input_ids'].to(device)\n",
|
283 |
+
" attention_mask = batch['attention_mask'].to(device)\n",
|
284 |
+
" labels = batch['label'].to(device)\n",
|
285 |
+
" outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n",
|
286 |
+
" _, preds = torch.max(outputs, dim=1)\n",
|
287 |
+
" predictions.extend(preds.cpu().tolist())\n",
|
288 |
+
" actual_labels.extend(labels.cpu().tolist())\n",
|
289 |
+
" return accuracy_score(actual_labels, predictions), classification_report(actual_labels, predictions)"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {
|
296 |
+
"id": "kbrYHrYtVX5o"
|
297 |
+
},
|
298 |
+
"outputs": [],
|
299 |
+
"source": [
|
300 |
+
"def predict_sentiments(texts, model, tokenizer, device, max_length=128):\n",
|
301 |
+
" model.eval()\n",
|
302 |
+
" all_predictions = []\n",
|
303 |
+
"\n",
|
304 |
+
" with torch.no_grad():\n",
|
305 |
+
" for text in texts:\n",
|
306 |
+
" encoding = tokenizer(text, return_tensors='pt', max_length=max_length, padding='max_length', truncation=True)\n",
|
307 |
+
" input_ids = encoding['input_ids'].to(device)\n",
|
308 |
+
" attention_mask = encoding['attention_mask'].to(device)\n",
|
309 |
+
"\n",
|
310 |
+
" outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n",
|
311 |
+
" _, preds = torch.max(outputs, dim=1) # Assuming logits is the output of your model\n",
|
312 |
+
" label = preds.item()\n",
|
313 |
+
"\n",
|
314 |
+
" all_predictions.append(label)\n",
|
315 |
+
"\n",
|
316 |
+
" positive_percentage = (sum(1 for label in all_predictions if label == 2) / len(all_predictions)) * 100\n",
|
317 |
+
" neutral_percentage = (sum(1 for label in all_predictions if label == 1) / len(all_predictions)) * 100\n",
|
318 |
+
" negative_percentage = (sum(1 for label in all_predictions if label == 0) / len(all_predictions)) * 100\n",
|
319 |
+
"\n",
|
320 |
+
" return positive_percentage, neutral_percentage, negative_percentage"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "code",
|
325 |
+
"execution_count": null,
|
326 |
+
"metadata": {
|
327 |
+
"id": "in1DCI9BVaEJ"
|
328 |
+
},
|
329 |
+
"outputs": [],
|
330 |
+
"source": [
|
331 |
+
"# Set up parameters\n",
|
332 |
+
"bert_model_name = 'bert-base-uncased'\n",
|
333 |
+
"num_classes = 3\n",
|
334 |
+
"max_length = 128\n",
|
335 |
+
"batch_size = 16\n",
|
336 |
+
"num_epochs = 1\n",
|
337 |
+
"learning_rate = 2e-5"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"cell_type": "code",
|
342 |
+
"execution_count": null,
|
343 |
+
"metadata": {
|
344 |
+
"id": "wAPXY-B5VdUQ"
|
345 |
+
},
|
346 |
+
"outputs": [],
|
347 |
+
"source": [
|
348 |
+
"train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "code",
|
353 |
+
"execution_count": null,
|
354 |
+
"metadata": {
|
355 |
+
"colab": {
|
356 |
+
"base_uri": "https://localhost:8080/"
|
357 |
+
},
|
358 |
+
"id": "qNrconhaVjLw",
|
359 |
+
"outputId": "12d7a846-542b-42dc-8f7e-3bfae9c2a66c"
|
360 |
+
},
|
361 |
+
"outputs": [
|
362 |
+
{
|
363 |
+
"output_type": "execute_result",
|
364 |
+
"data": {
|
365 |
+
"text/plain": [
|
366 |
+
"[0, 2, 1, 1, 0, 2, 2, 1, 0]"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
"metadata": {},
|
370 |
+
"execution_count": 34
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"random.sample(train_labels,9)"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": null,
|
380 |
+
"metadata": {
|
381 |
+
"id": "1mxmBNGbVf8L"
|
382 |
+
},
|
383 |
+
"outputs": [],
|
384 |
+
"source": [
|
385 |
+
"# Specify a cache directory for the tokenizer\n",
|
386 |
+
"tokenizer = BertTokenizer.from_pretrained(bert_model_name, cache_dir=\"/path/to/cache/directory\")\n",
|
387 |
+
"\n",
|
388 |
+
"# Rest of your code remains the same\n",
|
389 |
+
"train_dataset = TextClassificationDataset(train_texts, train_labels, tokenizer, max_length)\n",
|
390 |
+
"val_dataset = TextClassificationDataset(val_texts, val_labels, tokenizer, max_length)\n",
|
391 |
+
"train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
|
392 |
+
"val_dataloader = DataLoader(val_dataset, batch_size=batch_size)\n"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"cell_type": "code",
|
397 |
+
"execution_count": null,
|
398 |
+
"metadata": {
|
399 |
+
"id": "EM8AiMHnVnlh"
|
400 |
+
},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
404 |
+
"model = BERTClassifier(bert_model_name, num_classes).to(device)"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "code",
|
409 |
+
"execution_count": null,
|
410 |
+
"metadata": {
|
411 |
+
"colab": {
|
412 |
+
"base_uri": "https://localhost:8080/"
|
413 |
+
},
|
414 |
+
"id": "XHukmDqSVo0c",
|
415 |
+
"outputId": "cf8ca79c-9e3a-44c2-ca87-9be30b1ca42c"
|
416 |
+
},
|
417 |
+
"outputs": [
|
418 |
+
{
|
419 |
+
"output_type": "stream",
|
420 |
+
"name": "stderr",
|
421 |
+
"text": [
|
422 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
423 |
+
" warnings.warn(\n"
|
424 |
+
]
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"source": [
|
428 |
+
"optimizer = AdamW(model.parameters(), lr=learning_rate)\n",
|
429 |
+
"total_steps = len(train_dataloader) * num_epochs\n",
|
430 |
+
"scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": null,
|
436 |
+
"metadata": {
|
437 |
+
"colab": {
|
438 |
+
"base_uri": "https://localhost:8080/"
|
439 |
+
},
|
440 |
+
"id": "oDz6E1voVrlZ",
|
441 |
+
"outputId": "16c3d9b0-1982-482f-9739-c2b81b95e420"
|
442 |
+
},
|
443 |
+
"outputs": [
|
444 |
+
{
|
445 |
+
"output_type": "stream",
|
446 |
+
"name": "stdout",
|
447 |
+
"text": [
|
448 |
+
"Epoch 1/1\n",
|
449 |
+
"Validation Accuracy: 0.7180\n",
|
450 |
+
" precision recall f1-score support\n",
|
451 |
+
"\n",
|
452 |
+
" 0 0.61 0.55 0.58 465\n",
|
453 |
+
" 1 0.74 0.74 0.74 650\n",
|
454 |
+
" 2 0.76 0.78 0.77 885\n",
|
455 |
+
"\n",
|
456 |
+
" accuracy 0.72 2000\n",
|
457 |
+
" macro avg 0.70 0.69 0.70 2000\n",
|
458 |
+
"weighted avg 0.72 0.72 0.72 2000\n",
|
459 |
+
"\n"
|
460 |
+
]
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"for epoch in range(num_epochs):\n",
|
465 |
+
" print(f\"Epoch {epoch + 1}/{num_epochs}\")\n",
|
466 |
+
" train(model, train_dataloader, optimizer, scheduler, device)\n",
|
467 |
+
" accuracy, report = evaluate(model, val_dataloader, device)\n",
|
468 |
+
" print(f\"Validation Accuracy: {accuracy:.4f}\")\n",
|
469 |
+
" print(report)"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": null,
|
475 |
+
"metadata": {
|
476 |
+
"id": "u78uMbu2VslK"
|
477 |
+
},
|
478 |
+
"outputs": [],
|
479 |
+
"source": [
|
480 |
+
"torch.save(model.state_dict(), \"bert_classifier_three_labeled.pth\")"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "code",
|
485 |
+
"source": [
|
486 |
+
"\n"
|
487 |
+
],
|
488 |
+
"metadata": {
|
489 |
+
"id": "YQK0UZRdElRa"
|
490 |
+
},
|
491 |
+
"execution_count": null,
|
492 |
+
"outputs": []
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": null,
|
497 |
+
"metadata": {
|
498 |
+
"colab": {
|
499 |
+
"base_uri": "https://localhost:8080/"
|
500 |
+
},
|
501 |
+
"id": "uXZNj4pMVus0",
|
502 |
+
"outputId": "91bbb8fc-b29f-4bb3-ec83-686565deb849"
|
503 |
+
},
|
504 |
+
"outputs": [
|
505 |
+
{
|
506 |
+
"output_type": "stream",
|
507 |
+
"name": "stdout",
|
508 |
+
"text": [
|
509 |
+
"Positive Percentage: 40.00%\n",
|
510 |
+
"Neutral Percentage: 60.00%\n",
|
511 |
+
"Negative Percentage: 0.00%\n"
|
512 |
+
]
|
513 |
+
}
|
514 |
+
],
|
515 |
+
"source": [
|
516 |
+
"test_texts = [\n",
|
517 |
+
" \"PM Modi's unwavering dedication to economic development and his efforts to uplift the marginalized communities are truly commendable.\",\n",
|
518 |
+
" \"I'm not sure how I feel about this.\",\n",
|
519 |
+
" \"This is a negative statement about the situation.\",\n",
|
520 |
+
" \"Feeling positive about the upcoming event!\",\n",
|
521 |
+
" \"Neutral statement to test the model.\"\n",
|
522 |
+
"]\n",
|
523 |
+
"\n",
|
524 |
+
"positive_percent, neutral_percent, negative_percent = predict_sentiments(test_texts, model, tokenizer, device)\n",
|
525 |
+
"print(f\"Positive Percentage: {positive_percent:.2f}%\")\n",
|
526 |
+
"print(f\"Neutral Percentage: {neutral_percent:.2f}%\")\n",
|
527 |
+
"print(f\"Negative Percentage: {negative_percent:.2f}%\")"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"cell_type": "code",
|
532 |
+
"source": [
|
533 |
+
"import joblib\n",
|
534 |
+
"from transformers import BertForSequenceClassification, BertTokenizer\n",
|
535 |
+
"\n",
|
536 |
+
"# Example: Load or initialize your BERT model\n",
|
537 |
+
"model = BertForSequenceClassification.from_pretrained('bert-base-uncased')\n",
|
538 |
+
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
|
539 |
+
"\n",
|
540 |
+
"# Example: Train your BERT model (replace this with your actual training code)\n",
|
541 |
+
"\n",
|
542 |
+
"# Save the model and tokenizer using joblib\n",
|
543 |
+
"joblib.dump(model, 'bert_classifier_model.pkl')\n",
|
544 |
+
"joblib.dump(tokenizer, 'bert_classifier_tokenizer.pkl')\n"
|
545 |
+
],
|
546 |
+
"metadata": {
|
547 |
+
"id": "Dene5QabGch6",
|
548 |
+
"outputId": "19708822-836f-46fa-8976-137274b33217",
|
549 |
+
"colab": {
|
550 |
+
"base_uri": "https://localhost:8080/",
|
551 |
+
"height": 185,
|
552 |
+
"referenced_widgets": [
|
553 |
+
"d9a25586dd834e42b99b5c274cd0935d",
|
554 |
+
"0303b03e9cab4a8b9ba2dddd87a4facd",
|
555 |
+
"e0b75fa139a64528ae9bc55fc06bc5ea",
|
556 |
+
"8cf0ca3cf5bd4b60b7a04f4118159fe2",
|
557 |
+
"cf9746188523473fa0dc39301e282340",
|
558 |
+
"d6906e77d9b14d278784e9cd9c3a6cf6",
|
559 |
+
"d043e4555bb849fc9f3c92da52603eda",
|
560 |
+
"563365543d6e4bbc9c28bf5bb4133790",
|
561 |
+
"f61ad0ff939d415e93e3d39e3e0097fb",
|
562 |
+
"0c7866fccea940f4b315d39520ca474f",
|
563 |
+
"893498ae4ec648b394d3784795432def",
|
564 |
+
"f671208d412746fe80ea07026ee3bc00",
|
565 |
+
"c95faa4e2a0343dc82194553d77bcd58",
|
566 |
+
"b74261eb3702403b854c587ea5911677",
|
567 |
+
"03260f0e829049d3bb5e56d4dbe46ad9",
|
568 |
+
"453838b6f94248bcba56a6f6c7000a2c",
|
569 |
+
"c160773d7d664ff4957cadefe7817980",
|
570 |
+
"92c2deca172940418a0451ef81b753e3",
|
571 |
+
"d7699394ab574c6d9375a413962dbbc6",
|
572 |
+
"23b9ac612d294d91b100b2520c824d9d",
|
573 |
+
"3614df9bd02548f09d9da169693a0373",
|
574 |
+
"b022cc0f17c54c5aaf8e9e0722a627b3",
|
575 |
+
"571644d3b69e416295335a4e0d71c846",
|
576 |
+
"9dbf2ecb4e41422d8e8647d55bfcaeb7",
|
577 |
+
"704509f29b4440b2a26f89810cbd0f93",
|
578 |
+
"7c9e12515b8c48578abe0870b99aa6c4",
|
579 |
+
"1d77c5ff1fb0427bbfa4d74d630b3440",
|
580 |
+
"8c27fdca2d954ac0b3bff48c4a21c9f4",
|
581 |
+
"e1af2c93d89c42b6af4f71c6221edaa2",
|
582 |
+
"50a2bc1e58b34de39493fcc99d7906d8",
|
583 |
+
"bc7ceea7d04e4511af7c923b4380702e",
|
584 |
+
"2c248b5e372e4eeca557dcfbca329c2f",
|
585 |
+
"d563e6343b564accb9c972bf6a573d74"
|
586 |
+
]
|
587 |
+
}
|
588 |
+
},
|
589 |
+
"execution_count": null,
|
590 |
+
"outputs": [
|
591 |
+
{
|
592 |
+
"output_type": "stream",
|
593 |
+
"name": "stderr",
|
594 |
+
"text": [
|
595 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
596 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"output_type": "display_data",
|
601 |
+
"data": {
|
602 |
+
"text/plain": [
|
603 |
+
"tokenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
604 |
+
],
|
605 |
+
"application/vnd.jupyter.widget-view+json": {
|
606 |
+
"version_major": 2,
|
607 |
+
"version_minor": 0,
|
608 |
+
"model_id": "d9a25586dd834e42b99b5c274cd0935d"
|
609 |
+
}
|
610 |
+
},
|
611 |
+
"metadata": {}
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"output_type": "display_data",
|
615 |
+
"data": {
|
616 |
+
"text/plain": [
|
617 |
+
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
618 |
+
],
|
619 |
+
"application/vnd.jupyter.widget-view+json": {
|
620 |
+
"version_major": 2,
|
621 |
+
"version_minor": 0,
|
622 |
+
"model_id": "f671208d412746fe80ea07026ee3bc00"
|
623 |
+
}
|
624 |
+
},
|
625 |
+
"metadata": {}
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"output_type": "display_data",
|
629 |
+
"data": {
|
630 |
+
"text/plain": [
|
631 |
+
"tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]"
|
632 |
+
],
|
633 |
+
"application/vnd.jupyter.widget-view+json": {
|
634 |
+
"version_major": 2,
|
635 |
+
"version_minor": 0,
|
636 |
+
"model_id": "571644d3b69e416295335a4e0d71c846"
|
637 |
+
}
|
638 |
+
},
|
639 |
+
"metadata": {}
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"output_type": "execute_result",
|
643 |
+
"data": {
|
644 |
+
"text/plain": [
|
645 |
+
"['bert_classifier_tokenizer.pkl']"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
"metadata": {},
|
649 |
+
"execution_count": 42
|
650 |
+
}
|
651 |
+
]
|
652 |
+
}
|
653 |
+
],
|
654 |
+
"metadata": {
|
655 |
+
"colab": {
|
656 |
+
"provenance": [],
|
657 |
+
"gpuType": "T4"
|
658 |
+
},
|
659 |
+
"kernelspec": {
|
660 |
+
"display_name": "Python 3",
|
661 |
+
"name": "python3"
|
662 |
+
},
|
663 |
+
"language_info": {
|
664 |
+
"name": "python"
|
665 |
+
},
|
666 |
+
"widgets": {
|
667 |
+
"application/vnd.jupyter.widget-state+json": {
|
668 |
+
"d9a25586dd834e42b99b5c274cd0935d": {
|
669 |
+
"model_module": "@jupyter-widgets/controls",
|
670 |
+
"model_name": "HBoxModel",
|
671 |
+
"model_module_version": "1.5.0",
|
672 |
+
"state": {
|
673 |
+
"_dom_classes": [],
|
674 |
+
"_model_module": "@jupyter-widgets/controls",
|
675 |
+
"_model_module_version": "1.5.0",
|
676 |
+
"_model_name": "HBoxModel",
|
677 |
+
"_view_count": null,
|
678 |
+
"_view_module": "@jupyter-widgets/controls",
|
679 |
+
"_view_module_version": "1.5.0",
|
680 |
+
"_view_name": "HBoxView",
|
681 |
+
"box_style": "",
|
682 |
+
"children": [
|
683 |
+
"IPY_MODEL_0303b03e9cab4a8b9ba2dddd87a4facd",
|
684 |
+
"IPY_MODEL_e0b75fa139a64528ae9bc55fc06bc5ea",
|
685 |
+
"IPY_MODEL_8cf0ca3cf5bd4b60b7a04f4118159fe2"
|
686 |
+
],
|
687 |
+
"layout": "IPY_MODEL_cf9746188523473fa0dc39301e282340"
|
688 |
+
}
|
689 |
+
},
|
690 |
+
"0303b03e9cab4a8b9ba2dddd87a4facd": {
|
691 |
+
"model_module": "@jupyter-widgets/controls",
|
692 |
+
"model_name": "HTMLModel",
|
693 |
+
"model_module_version": "1.5.0",
|
694 |
+
"state": {
|
695 |
+
"_dom_classes": [],
|
696 |
+
"_model_module": "@jupyter-widgets/controls",
|
697 |
+
"_model_module_version": "1.5.0",
|
698 |
+
"_model_name": "HTMLModel",
|
699 |
+
"_view_count": null,
|
700 |
+
"_view_module": "@jupyter-widgets/controls",
|
701 |
+
"_view_module_version": "1.5.0",
|
702 |
+
"_view_name": "HTMLView",
|
703 |
+
"description": "",
|
704 |
+
"description_tooltip": null,
|
705 |
+
"layout": "IPY_MODEL_d6906e77d9b14d278784e9cd9c3a6cf6",
|
706 |
+
"placeholder": "",
|
707 |
+
"style": "IPY_MODEL_d043e4555bb849fc9f3c92da52603eda",
|
708 |
+
"value": "tokenizer_config.json: 100%"
|
709 |
+
}
|
710 |
+
},
|
711 |
+
"e0b75fa139a64528ae9bc55fc06bc5ea": {
|
712 |
+
"model_module": "@jupyter-widgets/controls",
|
713 |
+
"model_name": "FloatProgressModel",
|
714 |
+
"model_module_version": "1.5.0",
|
715 |
+
"state": {
|
716 |
+
"_dom_classes": [],
|
717 |
+
"_model_module": "@jupyter-widgets/controls",
|
718 |
+
"_model_module_version": "1.5.0",
|
719 |
+
"_model_name": "FloatProgressModel",
|
720 |
+
"_view_count": null,
|
721 |
+
"_view_module": "@jupyter-widgets/controls",
|
722 |
+
"_view_module_version": "1.5.0",
|
723 |
+
"_view_name": "ProgressView",
|
724 |
+
"bar_style": "success",
|
725 |
+
"description": "",
|
726 |
+
"description_tooltip": null,
|
727 |
+
"layout": "IPY_MODEL_563365543d6e4bbc9c28bf5bb4133790",
|
728 |
+
"max": 28,
|
729 |
+
"min": 0,
|
730 |
+
"orientation": "horizontal",
|
731 |
+
"style": "IPY_MODEL_f61ad0ff939d415e93e3d39e3e0097fb",
|
732 |
+
"value": 28
|
733 |
+
}
|
734 |
+
},
|
735 |
+
"8cf0ca3cf5bd4b60b7a04f4118159fe2": {
|
736 |
+
"model_module": "@jupyter-widgets/controls",
|
737 |
+
"model_name": "HTMLModel",
|
738 |
+
"model_module_version": "1.5.0",
|
739 |
+
"state": {
|
740 |
+
"_dom_classes": [],
|
741 |
+
"_model_module": "@jupyter-widgets/controls",
|
742 |
+
"_model_module_version": "1.5.0",
|
743 |
+
"_model_name": "HTMLModel",
|
744 |
+
"_view_count": null,
|
745 |
+
"_view_module": "@jupyter-widgets/controls",
|
746 |
+
"_view_module_version": "1.5.0",
|
747 |
+
"_view_name": "HTMLView",
|
748 |
+
"description": "",
|
749 |
+
"description_tooltip": null,
|
750 |
+
"layout": "IPY_MODEL_0c7866fccea940f4b315d39520ca474f",
|
751 |
+
"placeholder": "",
|
752 |
+
"style": "IPY_MODEL_893498ae4ec648b394d3784795432def",
|
753 |
+
"value": " 28.0/28.0 [00:00<00:00, 379B/s]"
|
754 |
+
}
|
755 |
+
},
|
756 |
+
"cf9746188523473fa0dc39301e282340": {
|
757 |
+
"model_module": "@jupyter-widgets/base",
|
758 |
+
"model_name": "LayoutModel",
|
759 |
+
"model_module_version": "1.2.0",
|
760 |
+
"state": {
|
761 |
+
"_model_module": "@jupyter-widgets/base",
|
762 |
+
"_model_module_version": "1.2.0",
|
763 |
+
"_model_name": "LayoutModel",
|
764 |
+
"_view_count": null,
|
765 |
+
"_view_module": "@jupyter-widgets/base",
|
766 |
+
"_view_module_version": "1.2.0",
|
767 |
+
"_view_name": "LayoutView",
|
768 |
+
"align_content": null,
|
769 |
+
"align_items": null,
|
770 |
+
"align_self": null,
|
771 |
+
"border": null,
|
772 |
+
"bottom": null,
|
773 |
+
"display": null,
|
774 |
+
"flex": null,
|
775 |
+
"flex_flow": null,
|
776 |
+
"grid_area": null,
|
777 |
+
"grid_auto_columns": null,
|
778 |
+
"grid_auto_flow": null,
|
779 |
+
"grid_auto_rows": null,
|
780 |
+
"grid_column": null,
|
781 |
+
"grid_gap": null,
|
782 |
+
"grid_row": null,
|
783 |
+
"grid_template_areas": null,
|
784 |
+
"grid_template_columns": null,
|
785 |
+
"grid_template_rows": null,
|
786 |
+
"height": null,
|
787 |
+
"justify_content": null,
|
788 |
+
"justify_items": null,
|
789 |
+
"left": null,
|
790 |
+
"margin": null,
|
791 |
+
"max_height": null,
|
792 |
+
"max_width": null,
|
793 |
+
"min_height": null,
|
794 |
+
"min_width": null,
|
795 |
+
"object_fit": null,
|
796 |
+
"object_position": null,
|
797 |
+
"order": null,
|
798 |
+
"overflow": null,
|
799 |
+
"overflow_x": null,
|
800 |
+
"overflow_y": null,
|
801 |
+
"padding": null,
|
802 |
+
"right": null,
|
803 |
+
"top": null,
|
804 |
+
"visibility": null,
|
805 |
+
"width": null
|
806 |
+
}
|
807 |
+
},
|
808 |
+
"d6906e77d9b14d278784e9cd9c3a6cf6": {
|
809 |
+
"model_module": "@jupyter-widgets/base",
|
810 |
+
"model_name": "LayoutModel",
|
811 |
+
"model_module_version": "1.2.0",
|
812 |
+
"state": {
|
813 |
+
"_model_module": "@jupyter-widgets/base",
|
814 |
+
"_model_module_version": "1.2.0",
|
815 |
+
"_model_name": "LayoutModel",
|
816 |
+
"_view_count": null,
|
817 |
+
"_view_module": "@jupyter-widgets/base",
|
818 |
+
"_view_module_version": "1.2.0",
|
819 |
+
"_view_name": "LayoutView",
|
820 |
+
"align_content": null,
|
821 |
+
"align_items": null,
|
822 |
+
"align_self": null,
|
823 |
+
"border": null,
|
824 |
+
"bottom": null,
|
825 |
+
"display": null,
|
826 |
+
"flex": null,
|
827 |
+
"flex_flow": null,
|
828 |
+
"grid_area": null,
|
829 |
+
"grid_auto_columns": null,
|
830 |
+
"grid_auto_flow": null,
|
831 |
+
"grid_auto_rows": null,
|
832 |
+
"grid_column": null,
|
833 |
+
"grid_gap": null,
|
834 |
+
"grid_row": null,
|
835 |
+
"grid_template_areas": null,
|
836 |
+
"grid_template_columns": null,
|
837 |
+
"grid_template_rows": null,
|
838 |
+
"height": null,
|
839 |
+
"justify_content": null,
|
840 |
+
"justify_items": null,
|
841 |
+
"left": null,
|
842 |
+
"margin": null,
|
843 |
+
"max_height": null,
|
844 |
+
"max_width": null,
|
845 |
+
"min_height": null,
|
846 |
+
"min_width": null,
|
847 |
+
"object_fit": null,
|
848 |
+
"object_position": null,
|
849 |
+
"order": null,
|
850 |
+
"overflow": null,
|
851 |
+
"overflow_x": null,
|
852 |
+
"overflow_y": null,
|
853 |
+
"padding": null,
|
854 |
+
"right": null,
|
855 |
+
"top": null,
|
856 |
+
"visibility": null,
|
857 |
+
"width": null
|
858 |
+
}
|
859 |
+
},
|
860 |
+
"d043e4555bb849fc9f3c92da52603eda": {
|
861 |
+
"model_module": "@jupyter-widgets/controls",
|
862 |
+
"model_name": "DescriptionStyleModel",
|
863 |
+
"model_module_version": "1.5.0",
|
864 |
+
"state": {
|
865 |
+
"_model_module": "@jupyter-widgets/controls",
|
866 |
+
"_model_module_version": "1.5.0",
|
867 |
+
"_model_name": "DescriptionStyleModel",
|
868 |
+
"_view_count": null,
|
869 |
+
"_view_module": "@jupyter-widgets/base",
|
870 |
+
"_view_module_version": "1.2.0",
|
871 |
+
"_view_name": "StyleView",
|
872 |
+
"description_width": ""
|
873 |
+
}
|
874 |
+
},
|
875 |
+
"563365543d6e4bbc9c28bf5bb4133790": {
|
876 |
+
"model_module": "@jupyter-widgets/base",
|
877 |
+
"model_name": "LayoutModel",
|
878 |
+
"model_module_version": "1.2.0",
|
879 |
+
"state": {
|
880 |
+
"_model_module": "@jupyter-widgets/base",
|
881 |
+
"_model_module_version": "1.2.0",
|
882 |
+
"_model_name": "LayoutModel",
|
883 |
+
"_view_count": null,
|
884 |
+
"_view_module": "@jupyter-widgets/base",
|
885 |
+
"_view_module_version": "1.2.0",
|
886 |
+
"_view_name": "LayoutView",
|
887 |
+
"align_content": null,
|
888 |
+
"align_items": null,
|
889 |
+
"align_self": null,
|
890 |
+
"border": null,
|
891 |
+
"bottom": null,
|
892 |
+
"display": null,
|
893 |
+
"flex": null,
|
894 |
+
"flex_flow": null,
|
895 |
+
"grid_area": null,
|
896 |
+
"grid_auto_columns": null,
|
897 |
+
"grid_auto_flow": null,
|
898 |
+
"grid_auto_rows": null,
|
899 |
+
"grid_column": null,
|
900 |
+
"grid_gap": null,
|
901 |
+
"grid_row": null,
|
902 |
+
"grid_template_areas": null,
|
903 |
+
"grid_template_columns": null,
|
904 |
+
"grid_template_rows": null,
|
905 |
+
"height": null,
|
906 |
+
"justify_content": null,
|
907 |
+
"justify_items": null,
|
908 |
+
"left": null,
|
909 |
+
"margin": null,
|
910 |
+
"max_height": null,
|
911 |
+
"max_width": null,
|
912 |
+
"min_height": null,
|
913 |
+
"min_width": null,
|
914 |
+
"object_fit": null,
|
915 |
+
"object_position": null,
|
916 |
+
"order": null,
|
917 |
+
"overflow": null,
|
918 |
+
"overflow_x": null,
|
919 |
+
"overflow_y": null,
|
920 |
+
"padding": null,
|
921 |
+
"right": null,
|
922 |
+
"top": null,
|
923 |
+
"visibility": null,
|
924 |
+
"width": null
|
925 |
+
}
|
926 |
+
},
|
927 |
+
"f61ad0ff939d415e93e3d39e3e0097fb": {
|
928 |
+
"model_module": "@jupyter-widgets/controls",
|
929 |
+
"model_name": "ProgressStyleModel",
|
930 |
+
"model_module_version": "1.5.0",
|
931 |
+
"state": {
|
932 |
+
"_model_module": "@jupyter-widgets/controls",
|
933 |
+
"_model_module_version": "1.5.0",
|
934 |
+
"_model_name": "ProgressStyleModel",
|
935 |
+
"_view_count": null,
|
936 |
+
"_view_module": "@jupyter-widgets/base",
|
937 |
+
"_view_module_version": "1.2.0",
|
938 |
+
"_view_name": "StyleView",
|
939 |
+
"bar_color": null,
|
940 |
+
"description_width": ""
|
941 |
+
}
|
942 |
+
},
|
943 |
+
"0c7866fccea940f4b315d39520ca474f": {
|
944 |
+
"model_module": "@jupyter-widgets/base",
|
945 |
+
"model_name": "LayoutModel",
|
946 |
+
"model_module_version": "1.2.0",
|
947 |
+
"state": {
|
948 |
+
"_model_module": "@jupyter-widgets/base",
|
949 |
+
"_model_module_version": "1.2.0",
|
950 |
+
"_model_name": "LayoutModel",
|
951 |
+
"_view_count": null,
|
952 |
+
"_view_module": "@jupyter-widgets/base",
|
953 |
+
"_view_module_version": "1.2.0",
|
954 |
+
"_view_name": "LayoutView",
|
955 |
+
"align_content": null,
|
956 |
+
"align_items": null,
|
957 |
+
"align_self": null,
|
958 |
+
"border": null,
|
959 |
+
"bottom": null,
|
960 |
+
"display": null,
|
961 |
+
"flex": null,
|
962 |
+
"flex_flow": null,
|
963 |
+
"grid_area": null,
|
964 |
+
"grid_auto_columns": null,
|
965 |
+
"grid_auto_flow": null,
|
966 |
+
"grid_auto_rows": null,
|
967 |
+
"grid_column": null,
|
968 |
+
"grid_gap": null,
|
969 |
+
"grid_row": null,
|
970 |
+
"grid_template_areas": null,
|
971 |
+
"grid_template_columns": null,
|
972 |
+
"grid_template_rows": null,
|
973 |
+
"height": null,
|
974 |
+
"justify_content": null,
|
975 |
+
"justify_items": null,
|
976 |
+
"left": null,
|
977 |
+
"margin": null,
|
978 |
+
"max_height": null,
|
979 |
+
"max_width": null,
|
980 |
+
"min_height": null,
|
981 |
+
"min_width": null,
|
982 |
+
"object_fit": null,
|
983 |
+
"object_position": null,
|
984 |
+
"order": null,
|
985 |
+
"overflow": null,
|
986 |
+
"overflow_x": null,
|
987 |
+
"overflow_y": null,
|
988 |
+
"padding": null,
|
989 |
+
"right": null,
|
990 |
+
"top": null,
|
991 |
+
"visibility": null,
|
992 |
+
"width": null
|
993 |
+
}
|
994 |
+
},
|
995 |
+
"893498ae4ec648b394d3784795432def": {
|
996 |
+
"model_module": "@jupyter-widgets/controls",
|
997 |
+
"model_name": "DescriptionStyleModel",
|
998 |
+
"model_module_version": "1.5.0",
|
999 |
+
"state": {
|
1000 |
+
"_model_module": "@jupyter-widgets/controls",
|
1001 |
+
"_model_module_version": "1.5.0",
|
1002 |
+
"_model_name": "DescriptionStyleModel",
|
1003 |
+
"_view_count": null,
|
1004 |
+
"_view_module": "@jupyter-widgets/base",
|
1005 |
+
"_view_module_version": "1.2.0",
|
1006 |
+
"_view_name": "StyleView",
|
1007 |
+
"description_width": ""
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
"f671208d412746fe80ea07026ee3bc00": {
|
1011 |
+
"model_module": "@jupyter-widgets/controls",
|
1012 |
+
"model_name": "HBoxModel",
|
1013 |
+
"model_module_version": "1.5.0",
|
1014 |
+
"state": {
|
1015 |
+
"_dom_classes": [],
|
1016 |
+
"_model_module": "@jupyter-widgets/controls",
|
1017 |
+
"_model_module_version": "1.5.0",
|
1018 |
+
"_model_name": "HBoxModel",
|
1019 |
+
"_view_count": null,
|
1020 |
+
"_view_module": "@jupyter-widgets/controls",
|
1021 |
+
"_view_module_version": "1.5.0",
|
1022 |
+
"_view_name": "HBoxView",
|
1023 |
+
"box_style": "",
|
1024 |
+
"children": [
|
1025 |
+
"IPY_MODEL_c95faa4e2a0343dc82194553d77bcd58",
|
1026 |
+
"IPY_MODEL_b74261eb3702403b854c587ea5911677",
|
1027 |
+
"IPY_MODEL_03260f0e829049d3bb5e56d4dbe46ad9"
|
1028 |
+
],
|
1029 |
+
"layout": "IPY_MODEL_453838b6f94248bcba56a6f6c7000a2c"
|
1030 |
+
}
|
1031 |
+
},
|
1032 |
+
"c95faa4e2a0343dc82194553d77bcd58": {
|
1033 |
+
"model_module": "@jupyter-widgets/controls",
|
1034 |
+
"model_name": "HTMLModel",
|
1035 |
+
"model_module_version": "1.5.0",
|
1036 |
+
"state": {
|
1037 |
+
"_dom_classes": [],
|
1038 |
+
"_model_module": "@jupyter-widgets/controls",
|
1039 |
+
"_model_module_version": "1.5.0",
|
1040 |
+
"_model_name": "HTMLModel",
|
1041 |
+
"_view_count": null,
|
1042 |
+
"_view_module": "@jupyter-widgets/controls",
|
1043 |
+
"_view_module_version": "1.5.0",
|
1044 |
+
"_view_name": "HTMLView",
|
1045 |
+
"description": "",
|
1046 |
+
"description_tooltip": null,
|
1047 |
+
"layout": "IPY_MODEL_c160773d7d664ff4957cadefe7817980",
|
1048 |
+
"placeholder": "",
|
1049 |
+
"style": "IPY_MODEL_92c2deca172940418a0451ef81b753e3",
|
1050 |
+
"value": "vocab.txt: 100%"
|
1051 |
+
}
|
1052 |
+
},
|
1053 |
+
"b74261eb3702403b854c587ea5911677": {
|
1054 |
+
"model_module": "@jupyter-widgets/controls",
|
1055 |
+
"model_name": "FloatProgressModel",
|
1056 |
+
"model_module_version": "1.5.0",
|
1057 |
+
"state": {
|
1058 |
+
"_dom_classes": [],
|
1059 |
+
"_model_module": "@jupyter-widgets/controls",
|
1060 |
+
"_model_module_version": "1.5.0",
|
1061 |
+
"_model_name": "FloatProgressModel",
|
1062 |
+
"_view_count": null,
|
1063 |
+
"_view_module": "@jupyter-widgets/controls",
|
1064 |
+
"_view_module_version": "1.5.0",
|
1065 |
+
"_view_name": "ProgressView",
|
1066 |
+
"bar_style": "success",
|
1067 |
+
"description": "",
|
1068 |
+
"description_tooltip": null,
|
1069 |
+
"layout": "IPY_MODEL_d7699394ab574c6d9375a413962dbbc6",
|
1070 |
+
"max": 231508,
|
1071 |
+
"min": 0,
|
1072 |
+
"orientation": "horizontal",
|
1073 |
+
"style": "IPY_MODEL_23b9ac612d294d91b100b2520c824d9d",
|
1074 |
+
"value": 231508
|
1075 |
+
}
|
1076 |
+
},
|
1077 |
+
"03260f0e829049d3bb5e56d4dbe46ad9": {
|
1078 |
+
"model_module": "@jupyter-widgets/controls",
|
1079 |
+
"model_name": "HTMLModel",
|
1080 |
+
"model_module_version": "1.5.0",
|
1081 |
+
"state": {
|
1082 |
+
"_dom_classes": [],
|
1083 |
+
"_model_module": "@jupyter-widgets/controls",
|
1084 |
+
"_model_module_version": "1.5.0",
|
1085 |
+
"_model_name": "HTMLModel",
|
1086 |
+
"_view_count": null,
|
1087 |
+
"_view_module": "@jupyter-widgets/controls",
|
1088 |
+
"_view_module_version": "1.5.0",
|
1089 |
+
"_view_name": "HTMLView",
|
1090 |
+
"description": "",
|
1091 |
+
"description_tooltip": null,
|
1092 |
+
"layout": "IPY_MODEL_3614df9bd02548f09d9da169693a0373",
|
1093 |
+
"placeholder": "",
|
1094 |
+
"style": "IPY_MODEL_b022cc0f17c54c5aaf8e9e0722a627b3",
|
1095 |
+
"value": " 232k/232k [00:00<00:00, 2.40MB/s]"
|
1096 |
+
}
|
1097 |
+
},
|
1098 |
+
"453838b6f94248bcba56a6f6c7000a2c": {
|
1099 |
+
"model_module": "@jupyter-widgets/base",
|
1100 |
+
"model_name": "LayoutModel",
|
1101 |
+
"model_module_version": "1.2.0",
|
1102 |
+
"state": {
|
1103 |
+
"_model_module": "@jupyter-widgets/base",
|
1104 |
+
"_model_module_version": "1.2.0",
|
1105 |
+
"_model_name": "LayoutModel",
|
1106 |
+
"_view_count": null,
|
1107 |
+
"_view_module": "@jupyter-widgets/base",
|
1108 |
+
"_view_module_version": "1.2.0",
|
1109 |
+
"_view_name": "LayoutView",
|
1110 |
+
"align_content": null,
|
1111 |
+
"align_items": null,
|
1112 |
+
"align_self": null,
|
1113 |
+
"border": null,
|
1114 |
+
"bottom": null,
|
1115 |
+
"display": null,
|
1116 |
+
"flex": null,
|
1117 |
+
"flex_flow": null,
|
1118 |
+
"grid_area": null,
|
1119 |
+
"grid_auto_columns": null,
|
1120 |
+
"grid_auto_flow": null,
|
1121 |
+
"grid_auto_rows": null,
|
1122 |
+
"grid_column": null,
|
1123 |
+
"grid_gap": null,
|
1124 |
+
"grid_row": null,
|
1125 |
+
"grid_template_areas": null,
|
1126 |
+
"grid_template_columns": null,
|
1127 |
+
"grid_template_rows": null,
|
1128 |
+
"height": null,
|
1129 |
+
"justify_content": null,
|
1130 |
+
"justify_items": null,
|
1131 |
+
"left": null,
|
1132 |
+
"margin": null,
|
1133 |
+
"max_height": null,
|
1134 |
+
"max_width": null,
|
1135 |
+
"min_height": null,
|
1136 |
+
"min_width": null,
|
1137 |
+
"object_fit": null,
|
1138 |
+
"object_position": null,
|
1139 |
+
"order": null,
|
1140 |
+
"overflow": null,
|
1141 |
+
"overflow_x": null,
|
1142 |
+
"overflow_y": null,
|
1143 |
+
"padding": null,
|
1144 |
+
"right": null,
|
1145 |
+
"top": null,
|
1146 |
+
"visibility": null,
|
1147 |
+
"width": null
|
1148 |
+
}
|
1149 |
+
},
|
1150 |
+
"c160773d7d664ff4957cadefe7817980": {
|
1151 |
+
"model_module": "@jupyter-widgets/base",
|
1152 |
+
"model_name": "LayoutModel",
|
1153 |
+
"model_module_version": "1.2.0",
|
1154 |
+
"state": {
|
1155 |
+
"_model_module": "@jupyter-widgets/base",
|
1156 |
+
"_model_module_version": "1.2.0",
|
1157 |
+
"_model_name": "LayoutModel",
|
1158 |
+
"_view_count": null,
|
1159 |
+
"_view_module": "@jupyter-widgets/base",
|
1160 |
+
"_view_module_version": "1.2.0",
|
1161 |
+
"_view_name": "LayoutView",
|
1162 |
+
"align_content": null,
|
1163 |
+
"align_items": null,
|
1164 |
+
"align_self": null,
|
1165 |
+
"border": null,
|
1166 |
+
"bottom": null,
|
1167 |
+
"display": null,
|
1168 |
+
"flex": null,
|
1169 |
+
"flex_flow": null,
|
1170 |
+
"grid_area": null,
|
1171 |
+
"grid_auto_columns": null,
|
1172 |
+
"grid_auto_flow": null,
|
1173 |
+
"grid_auto_rows": null,
|
1174 |
+
"grid_column": null,
|
1175 |
+
"grid_gap": null,
|
1176 |
+
"grid_row": null,
|
1177 |
+
"grid_template_areas": null,
|
1178 |
+
"grid_template_columns": null,
|
1179 |
+
"grid_template_rows": null,
|
1180 |
+
"height": null,
|
1181 |
+
"justify_content": null,
|
1182 |
+
"justify_items": null,
|
1183 |
+
"left": null,
|
1184 |
+
"margin": null,
|
1185 |
+
"max_height": null,
|
1186 |
+
"max_width": null,
|
1187 |
+
"min_height": null,
|
1188 |
+
"min_width": null,
|
1189 |
+
"object_fit": null,
|
1190 |
+
"object_position": null,
|
1191 |
+
"order": null,
|
1192 |
+
"overflow": null,
|
1193 |
+
"overflow_x": null,
|
1194 |
+
"overflow_y": null,
|
1195 |
+
"padding": null,
|
1196 |
+
"right": null,
|
1197 |
+
"top": null,
|
1198 |
+
"visibility": null,
|
1199 |
+
"width": null
|
1200 |
+
}
|
1201 |
+
},
|
1202 |
+
"92c2deca172940418a0451ef81b753e3": {
|
1203 |
+
"model_module": "@jupyter-widgets/controls",
|
1204 |
+
"model_name": "DescriptionStyleModel",
|
1205 |
+
"model_module_version": "1.5.0",
|
1206 |
+
"state": {
|
1207 |
+
"_model_module": "@jupyter-widgets/controls",
|
1208 |
+
"_model_module_version": "1.5.0",
|
1209 |
+
"_model_name": "DescriptionStyleModel",
|
1210 |
+
"_view_count": null,
|
1211 |
+
"_view_module": "@jupyter-widgets/base",
|
1212 |
+
"_view_module_version": "1.2.0",
|
1213 |
+
"_view_name": "StyleView",
|
1214 |
+
"description_width": ""
|
1215 |
+
}
|
1216 |
+
},
|
1217 |
+
"d7699394ab574c6d9375a413962dbbc6": {
|
1218 |
+
"model_module": "@jupyter-widgets/base",
|
1219 |
+
"model_name": "LayoutModel",
|
1220 |
+
"model_module_version": "1.2.0",
|
1221 |
+
"state": {
|
1222 |
+
"_model_module": "@jupyter-widgets/base",
|
1223 |
+
"_model_module_version": "1.2.0",
|
1224 |
+
"_model_name": "LayoutModel",
|
1225 |
+
"_view_count": null,
|
1226 |
+
"_view_module": "@jupyter-widgets/base",
|
1227 |
+
"_view_module_version": "1.2.0",
|
1228 |
+
"_view_name": "LayoutView",
|
1229 |
+
"align_content": null,
|
1230 |
+
"align_items": null,
|
1231 |
+
"align_self": null,
|
1232 |
+
"border": null,
|
1233 |
+
"bottom": null,
|
1234 |
+
"display": null,
|
1235 |
+
"flex": null,
|
1236 |
+
"flex_flow": null,
|
1237 |
+
"grid_area": null,
|
1238 |
+
"grid_auto_columns": null,
|
1239 |
+
"grid_auto_flow": null,
|
1240 |
+
"grid_auto_rows": null,
|
1241 |
+
"grid_column": null,
|
1242 |
+
"grid_gap": null,
|
1243 |
+
"grid_row": null,
|
1244 |
+
"grid_template_areas": null,
|
1245 |
+
"grid_template_columns": null,
|
1246 |
+
"grid_template_rows": null,
|
1247 |
+
"height": null,
|
1248 |
+
"justify_content": null,
|
1249 |
+
"justify_items": null,
|
1250 |
+
"left": null,
|
1251 |
+
"margin": null,
|
1252 |
+
"max_height": null,
|
1253 |
+
"max_width": null,
|
1254 |
+
"min_height": null,
|
1255 |
+
"min_width": null,
|
1256 |
+
"object_fit": null,
|
1257 |
+
"object_position": null,
|
1258 |
+
"order": null,
|
1259 |
+
"overflow": null,
|
1260 |
+
"overflow_x": null,
|
1261 |
+
"overflow_y": null,
|
1262 |
+
"padding": null,
|
1263 |
+
"right": null,
|
1264 |
+
"top": null,
|
1265 |
+
"visibility": null,
|
1266 |
+
"width": null
|
1267 |
+
}
|
1268 |
+
},
|
1269 |
+
"23b9ac612d294d91b100b2520c824d9d": {
|
1270 |
+
"model_module": "@jupyter-widgets/controls",
|
1271 |
+
"model_name": "ProgressStyleModel",
|
1272 |
+
"model_module_version": "1.5.0",
|
1273 |
+
"state": {
|
1274 |
+
"_model_module": "@jupyter-widgets/controls",
|
1275 |
+
"_model_module_version": "1.5.0",
|
1276 |
+
"_model_name": "ProgressStyleModel",
|
1277 |
+
"_view_count": null,
|
1278 |
+
"_view_module": "@jupyter-widgets/base",
|
1279 |
+
"_view_module_version": "1.2.0",
|
1280 |
+
"_view_name": "StyleView",
|
1281 |
+
"bar_color": null,
|
1282 |
+
"description_width": ""
|
1283 |
+
}
|
1284 |
+
},
|
1285 |
+
"3614df9bd02548f09d9da169693a0373": {
|
1286 |
+
"model_module": "@jupyter-widgets/base",
|
1287 |
+
"model_name": "LayoutModel",
|
1288 |
+
"model_module_version": "1.2.0",
|
1289 |
+
"state": {
|
1290 |
+
"_model_module": "@jupyter-widgets/base",
|
1291 |
+
"_model_module_version": "1.2.0",
|
1292 |
+
"_model_name": "LayoutModel",
|
1293 |
+
"_view_count": null,
|
1294 |
+
"_view_module": "@jupyter-widgets/base",
|
1295 |
+
"_view_module_version": "1.2.0",
|
1296 |
+
"_view_name": "LayoutView",
|
1297 |
+
"align_content": null,
|
1298 |
+
"align_items": null,
|
1299 |
+
"align_self": null,
|
1300 |
+
"border": null,
|
1301 |
+
"bottom": null,
|
1302 |
+
"display": null,
|
1303 |
+
"flex": null,
|
1304 |
+
"flex_flow": null,
|
1305 |
+
"grid_area": null,
|
1306 |
+
"grid_auto_columns": null,
|
1307 |
+
"grid_auto_flow": null,
|
1308 |
+
"grid_auto_rows": null,
|
1309 |
+
"grid_column": null,
|
1310 |
+
"grid_gap": null,
|
1311 |
+
"grid_row": null,
|
1312 |
+
"grid_template_areas": null,
|
1313 |
+
"grid_template_columns": null,
|
1314 |
+
"grid_template_rows": null,
|
1315 |
+
"height": null,
|
1316 |
+
"justify_content": null,
|
1317 |
+
"justify_items": null,
|
1318 |
+
"left": null,
|
1319 |
+
"margin": null,
|
1320 |
+
"max_height": null,
|
1321 |
+
"max_width": null,
|
1322 |
+
"min_height": null,
|
1323 |
+
"min_width": null,
|
1324 |
+
"object_fit": null,
|
1325 |
+
"object_position": null,
|
1326 |
+
"order": null,
|
1327 |
+
"overflow": null,
|
1328 |
+
"overflow_x": null,
|
1329 |
+
"overflow_y": null,
|
1330 |
+
"padding": null,
|
1331 |
+
"right": null,
|
1332 |
+
"top": null,
|
1333 |
+
"visibility": null,
|
1334 |
+
"width": null
|
1335 |
+
}
|
1336 |
+
},
|
1337 |
+
"b022cc0f17c54c5aaf8e9e0722a627b3": {
|
1338 |
+
"model_module": "@jupyter-widgets/controls",
|
1339 |
+
"model_name": "DescriptionStyleModel",
|
1340 |
+
"model_module_version": "1.5.0",
|
1341 |
+
"state": {
|
1342 |
+
"_model_module": "@jupyter-widgets/controls",
|
1343 |
+
"_model_module_version": "1.5.0",
|
1344 |
+
"_model_name": "DescriptionStyleModel",
|
1345 |
+
"_view_count": null,
|
1346 |
+
"_view_module": "@jupyter-widgets/base",
|
1347 |
+
"_view_module_version": "1.2.0",
|
1348 |
+
"_view_name": "StyleView",
|
1349 |
+
"description_width": ""
|
1350 |
+
}
|
1351 |
+
},
|
1352 |
+
"571644d3b69e416295335a4e0d71c846": {
|
1353 |
+
"model_module": "@jupyter-widgets/controls",
|
1354 |
+
"model_name": "HBoxModel",
|
1355 |
+
"model_module_version": "1.5.0",
|
1356 |
+
"state": {
|
1357 |
+
"_dom_classes": [],
|
1358 |
+
"_model_module": "@jupyter-widgets/controls",
|
1359 |
+
"_model_module_version": "1.5.0",
|
1360 |
+
"_model_name": "HBoxModel",
|
1361 |
+
"_view_count": null,
|
1362 |
+
"_view_module": "@jupyter-widgets/controls",
|
1363 |
+
"_view_module_version": "1.5.0",
|
1364 |
+
"_view_name": "HBoxView",
|
1365 |
+
"box_style": "",
|
1366 |
+
"children": [
|
1367 |
+
"IPY_MODEL_9dbf2ecb4e41422d8e8647d55bfcaeb7",
|
1368 |
+
"IPY_MODEL_704509f29b4440b2a26f89810cbd0f93",
|
1369 |
+
"IPY_MODEL_7c9e12515b8c48578abe0870b99aa6c4"
|
1370 |
+
],
|
1371 |
+
"layout": "IPY_MODEL_1d77c5ff1fb0427bbfa4d74d630b3440"
|
1372 |
+
}
|
1373 |
+
},
|
1374 |
+
"9dbf2ecb4e41422d8e8647d55bfcaeb7": {
|
1375 |
+
"model_module": "@jupyter-widgets/controls",
|
1376 |
+
"model_name": "HTMLModel",
|
1377 |
+
"model_module_version": "1.5.0",
|
1378 |
+
"state": {
|
1379 |
+
"_dom_classes": [],
|
1380 |
+
"_model_module": "@jupyter-widgets/controls",
|
1381 |
+
"_model_module_version": "1.5.0",
|
1382 |
+
"_model_name": "HTMLModel",
|
1383 |
+
"_view_count": null,
|
1384 |
+
"_view_module": "@jupyter-widgets/controls",
|
1385 |
+
"_view_module_version": "1.5.0",
|
1386 |
+
"_view_name": "HTMLView",
|
1387 |
+
"description": "",
|
1388 |
+
"description_tooltip": null,
|
1389 |
+
"layout": "IPY_MODEL_8c27fdca2d954ac0b3bff48c4a21c9f4",
|
1390 |
+
"placeholder": "",
|
1391 |
+
"style": "IPY_MODEL_e1af2c93d89c42b6af4f71c6221edaa2",
|
1392 |
+
"value": "tokenizer.json: 100%"
|
1393 |
+
}
|
1394 |
+
},
|
1395 |
+
"704509f29b4440b2a26f89810cbd0f93": {
|
1396 |
+
"model_module": "@jupyter-widgets/controls",
|
1397 |
+
"model_name": "FloatProgressModel",
|
1398 |
+
"model_module_version": "1.5.0",
|
1399 |
+
"state": {
|
1400 |
+
"_dom_classes": [],
|
1401 |
+
"_model_module": "@jupyter-widgets/controls",
|
1402 |
+
"_model_module_version": "1.5.0",
|
1403 |
+
"_model_name": "FloatProgressModel",
|
1404 |
+
"_view_count": null,
|
1405 |
+
"_view_module": "@jupyter-widgets/controls",
|
1406 |
+
"_view_module_version": "1.5.0",
|
1407 |
+
"_view_name": "ProgressView",
|
1408 |
+
"bar_style": "success",
|
1409 |
+
"description": "",
|
1410 |
+
"description_tooltip": null,
|
1411 |
+
"layout": "IPY_MODEL_50a2bc1e58b34de39493fcc99d7906d8",
|
1412 |
+
"max": 466062,
|
1413 |
+
"min": 0,
|
1414 |
+
"orientation": "horizontal",
|
1415 |
+
"style": "IPY_MODEL_bc7ceea7d04e4511af7c923b4380702e",
|
1416 |
+
"value": 466062
|
1417 |
+
}
|
1418 |
+
},
|
1419 |
+
"7c9e12515b8c48578abe0870b99aa6c4": {
|
1420 |
+
"model_module": "@jupyter-widgets/controls",
|
1421 |
+
"model_name": "HTMLModel",
|
1422 |
+
"model_module_version": "1.5.0",
|
1423 |
+
"state": {
|
1424 |
+
"_dom_classes": [],
|
1425 |
+
"_model_module": "@jupyter-widgets/controls",
|
1426 |
+
"_model_module_version": "1.5.0",
|
1427 |
+
"_model_name": "HTMLModel",
|
1428 |
+
"_view_count": null,
|
1429 |
+
"_view_module": "@jupyter-widgets/controls",
|
1430 |
+
"_view_module_version": "1.5.0",
|
1431 |
+
"_view_name": "HTMLView",
|
1432 |
+
"description": "",
|
1433 |
+
"description_tooltip": null,
|
1434 |
+
"layout": "IPY_MODEL_2c248b5e372e4eeca557dcfbca329c2f",
|
1435 |
+
"placeholder": "",
|
1436 |
+
"style": "IPY_MODEL_d563e6343b564accb9c972bf6a573d74",
|
1437 |
+
"value": " 466k/466k [00:00<00:00, 1.79MB/s]"
|
1438 |
+
}
|
1439 |
+
},
|
1440 |
+
"1d77c5ff1fb0427bbfa4d74d630b3440": {
|
1441 |
+
"model_module": "@jupyter-widgets/base",
|
1442 |
+
"model_name": "LayoutModel",
|
1443 |
+
"model_module_version": "1.2.0",
|
1444 |
+
"state": {
|
1445 |
+
"_model_module": "@jupyter-widgets/base",
|
1446 |
+
"_model_module_version": "1.2.0",
|
1447 |
+
"_model_name": "LayoutModel",
|
1448 |
+
"_view_count": null,
|
1449 |
+
"_view_module": "@jupyter-widgets/base",
|
1450 |
+
"_view_module_version": "1.2.0",
|
1451 |
+
"_view_name": "LayoutView",
|
1452 |
+
"align_content": null,
|
1453 |
+
"align_items": null,
|
1454 |
+
"align_self": null,
|
1455 |
+
"border": null,
|
1456 |
+
"bottom": null,
|
1457 |
+
"display": null,
|
1458 |
+
"flex": null,
|
1459 |
+
"flex_flow": null,
|
1460 |
+
"grid_area": null,
|
1461 |
+
"grid_auto_columns": null,
|
1462 |
+
"grid_auto_flow": null,
|
1463 |
+
"grid_auto_rows": null,
|
1464 |
+
"grid_column": null,
|
1465 |
+
"grid_gap": null,
|
1466 |
+
"grid_row": null,
|
1467 |
+
"grid_template_areas": null,
|
1468 |
+
"grid_template_columns": null,
|
1469 |
+
"grid_template_rows": null,
|
1470 |
+
"height": null,
|
1471 |
+
"justify_content": null,
|
1472 |
+
"justify_items": null,
|
1473 |
+
"left": null,
|
1474 |
+
"margin": null,
|
1475 |
+
"max_height": null,
|
1476 |
+
"max_width": null,
|
1477 |
+
"min_height": null,
|
1478 |
+
"min_width": null,
|
1479 |
+
"object_fit": null,
|
1480 |
+
"object_position": null,
|
1481 |
+
"order": null,
|
1482 |
+
"overflow": null,
|
1483 |
+
"overflow_x": null,
|
1484 |
+
"overflow_y": null,
|
1485 |
+
"padding": null,
|
1486 |
+
"right": null,
|
1487 |
+
"top": null,
|
1488 |
+
"visibility": null,
|
1489 |
+
"width": null
|
1490 |
+
}
|
1491 |
+
},
|
1492 |
+
"8c27fdca2d954ac0b3bff48c4a21c9f4": {
|
1493 |
+
"model_module": "@jupyter-widgets/base",
|
1494 |
+
"model_name": "LayoutModel",
|
1495 |
+
"model_module_version": "1.2.0",
|
1496 |
+
"state": {
|
1497 |
+
"_model_module": "@jupyter-widgets/base",
|
1498 |
+
"_model_module_version": "1.2.0",
|
1499 |
+
"_model_name": "LayoutModel",
|
1500 |
+
"_view_count": null,
|
1501 |
+
"_view_module": "@jupyter-widgets/base",
|
1502 |
+
"_view_module_version": "1.2.0",
|
1503 |
+
"_view_name": "LayoutView",
|
1504 |
+
"align_content": null,
|
1505 |
+
"align_items": null,
|
1506 |
+
"align_self": null,
|
1507 |
+
"border": null,
|
1508 |
+
"bottom": null,
|
1509 |
+
"display": null,
|
1510 |
+
"flex": null,
|
1511 |
+
"flex_flow": null,
|
1512 |
+
"grid_area": null,
|
1513 |
+
"grid_auto_columns": null,
|
1514 |
+
"grid_auto_flow": null,
|
1515 |
+
"grid_auto_rows": null,
|
1516 |
+
"grid_column": null,
|
1517 |
+
"grid_gap": null,
|
1518 |
+
"grid_row": null,
|
1519 |
+
"grid_template_areas": null,
|
1520 |
+
"grid_template_columns": null,
|
1521 |
+
"grid_template_rows": null,
|
1522 |
+
"height": null,
|
1523 |
+
"justify_content": null,
|
1524 |
+
"justify_items": null,
|
1525 |
+
"left": null,
|
1526 |
+
"margin": null,
|
1527 |
+
"max_height": null,
|
1528 |
+
"max_width": null,
|
1529 |
+
"min_height": null,
|
1530 |
+
"min_width": null,
|
1531 |
+
"object_fit": null,
|
1532 |
+
"object_position": null,
|
1533 |
+
"order": null,
|
1534 |
+
"overflow": null,
|
1535 |
+
"overflow_x": null,
|
1536 |
+
"overflow_y": null,
|
1537 |
+
"padding": null,
|
1538 |
+
"right": null,
|
1539 |
+
"top": null,
|
1540 |
+
"visibility": null,
|
1541 |
+
"width": null
|
1542 |
+
}
|
1543 |
+
},
|
1544 |
+
"e1af2c93d89c42b6af4f71c6221edaa2": {
|
1545 |
+
"model_module": "@jupyter-widgets/controls",
|
1546 |
+
"model_name": "DescriptionStyleModel",
|
1547 |
+
"model_module_version": "1.5.0",
|
1548 |
+
"state": {
|
1549 |
+
"_model_module": "@jupyter-widgets/controls",
|
1550 |
+
"_model_module_version": "1.5.0",
|
1551 |
+
"_model_name": "DescriptionStyleModel",
|
1552 |
+
"_view_count": null,
|
1553 |
+
"_view_module": "@jupyter-widgets/base",
|
1554 |
+
"_view_module_version": "1.2.0",
|
1555 |
+
"_view_name": "StyleView",
|
1556 |
+
"description_width": ""
|
1557 |
+
}
|
1558 |
+
},
|
1559 |
+
"50a2bc1e58b34de39493fcc99d7906d8": {
|
1560 |
+
"model_module": "@jupyter-widgets/base",
|
1561 |
+
"model_name": "LayoutModel",
|
1562 |
+
"model_module_version": "1.2.0",
|
1563 |
+
"state": {
|
1564 |
+
"_model_module": "@jupyter-widgets/base",
|
1565 |
+
"_model_module_version": "1.2.0",
|
1566 |
+
"_model_name": "LayoutModel",
|
1567 |
+
"_view_count": null,
|
1568 |
+
"_view_module": "@jupyter-widgets/base",
|
1569 |
+
"_view_module_version": "1.2.0",
|
1570 |
+
"_view_name": "LayoutView",
|
1571 |
+
"align_content": null,
|
1572 |
+
"align_items": null,
|
1573 |
+
"align_self": null,
|
1574 |
+
"border": null,
|
1575 |
+
"bottom": null,
|
1576 |
+
"display": null,
|
1577 |
+
"flex": null,
|
1578 |
+
"flex_flow": null,
|
1579 |
+
"grid_area": null,
|
1580 |
+
"grid_auto_columns": null,
|
1581 |
+
"grid_auto_flow": null,
|
1582 |
+
"grid_auto_rows": null,
|
1583 |
+
"grid_column": null,
|
1584 |
+
"grid_gap": null,
|
1585 |
+
"grid_row": null,
|
1586 |
+
"grid_template_areas": null,
|
1587 |
+
"grid_template_columns": null,
|
1588 |
+
"grid_template_rows": null,
|
1589 |
+
"height": null,
|
1590 |
+
"justify_content": null,
|
1591 |
+
"justify_items": null,
|
1592 |
+
"left": null,
|
1593 |
+
"margin": null,
|
1594 |
+
"max_height": null,
|
1595 |
+
"max_width": null,
|
1596 |
+
"min_height": null,
|
1597 |
+
"min_width": null,
|
1598 |
+
"object_fit": null,
|
1599 |
+
"object_position": null,
|
1600 |
+
"order": null,
|
1601 |
+
"overflow": null,
|
1602 |
+
"overflow_x": null,
|
1603 |
+
"overflow_y": null,
|
1604 |
+
"padding": null,
|
1605 |
+
"right": null,
|
1606 |
+
"top": null,
|
1607 |
+
"visibility": null,
|
1608 |
+
"width": null
|
1609 |
+
}
|
1610 |
+
},
|
1611 |
+
"bc7ceea7d04e4511af7c923b4380702e": {
|
1612 |
+
"model_module": "@jupyter-widgets/controls",
|
1613 |
+
"model_name": "ProgressStyleModel",
|
1614 |
+
"model_module_version": "1.5.0",
|
1615 |
+
"state": {
|
1616 |
+
"_model_module": "@jupyter-widgets/controls",
|
1617 |
+
"_model_module_version": "1.5.0",
|
1618 |
+
"_model_name": "ProgressStyleModel",
|
1619 |
+
"_view_count": null,
|
1620 |
+
"_view_module": "@jupyter-widgets/base",
|
1621 |
+
"_view_module_version": "1.2.0",
|
1622 |
+
"_view_name": "StyleView",
|
1623 |
+
"bar_color": null,
|
1624 |
+
"description_width": ""
|
1625 |
+
}
|
1626 |
+
},
|
1627 |
+
"2c248b5e372e4eeca557dcfbca329c2f": {
|
1628 |
+
"model_module": "@jupyter-widgets/base",
|
1629 |
+
"model_name": "LayoutModel",
|
1630 |
+
"model_module_version": "1.2.0",
|
1631 |
+
"state": {
|
1632 |
+
"_model_module": "@jupyter-widgets/base",
|
1633 |
+
"_model_module_version": "1.2.0",
|
1634 |
+
"_model_name": "LayoutModel",
|
1635 |
+
"_view_count": null,
|
1636 |
+
"_view_module": "@jupyter-widgets/base",
|
1637 |
+
"_view_module_version": "1.2.0",
|
1638 |
+
"_view_name": "LayoutView",
|
1639 |
+
"align_content": null,
|
1640 |
+
"align_items": null,
|
1641 |
+
"align_self": null,
|
1642 |
+
"border": null,
|
1643 |
+
"bottom": null,
|
1644 |
+
"display": null,
|
1645 |
+
"flex": null,
|
1646 |
+
"flex_flow": null,
|
1647 |
+
"grid_area": null,
|
1648 |
+
"grid_auto_columns": null,
|
1649 |
+
"grid_auto_flow": null,
|
1650 |
+
"grid_auto_rows": null,
|
1651 |
+
"grid_column": null,
|
1652 |
+
"grid_gap": null,
|
1653 |
+
"grid_row": null,
|
1654 |
+
"grid_template_areas": null,
|
1655 |
+
"grid_template_columns": null,
|
1656 |
+
"grid_template_rows": null,
|
1657 |
+
"height": null,
|
1658 |
+
"justify_content": null,
|
1659 |
+
"justify_items": null,
|
1660 |
+
"left": null,
|
1661 |
+
"margin": null,
|
1662 |
+
"max_height": null,
|
1663 |
+
"max_width": null,
|
1664 |
+
"min_height": null,
|
1665 |
+
"min_width": null,
|
1666 |
+
"object_fit": null,
|
1667 |
+
"object_position": null,
|
1668 |
+
"order": null,
|
1669 |
+
"overflow": null,
|
1670 |
+
"overflow_x": null,
|
1671 |
+
"overflow_y": null,
|
1672 |
+
"padding": null,
|
1673 |
+
"right": null,
|
1674 |
+
"top": null,
|
1675 |
+
"visibility": null,
|
1676 |
+
"width": null
|
1677 |
+
}
|
1678 |
+
},
|
1679 |
+
"d563e6343b564accb9c972bf6a573d74": {
|
1680 |
+
"model_module": "@jupyter-widgets/controls",
|
1681 |
+
"model_name": "DescriptionStyleModel",
|
1682 |
+
"model_module_version": "1.5.0",
|
1683 |
+
"state": {
|
1684 |
+
"_model_module": "@jupyter-widgets/controls",
|
1685 |
+
"_model_module_version": "1.5.0",
|
1686 |
+
"_model_name": "DescriptionStyleModel",
|
1687 |
+
"_view_count": null,
|
1688 |
+
"_view_module": "@jupyter-widgets/base",
|
1689 |
+
"_view_module_version": "1.2.0",
|
1690 |
+
"_view_name": "StyleView",
|
1691 |
+
"description_width": ""
|
1692 |
+
}
|
1693 |
+
}
|
1694 |
+
}
|
1695 |
+
},
|
1696 |
+
"accelerator": "GPU"
|
1697 |
+
},
|
1698 |
+
"nbformat": 4,
|
1699 |
+
"nbformat_minor": 0
|
1700 |
+
}
|