---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: tinyllama-1.1B_alpaca_2k_lora
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
# Upload the final model to Huggingface
hub_model_id: shalini03/tinyllama-1.1B_alpaca_2k_lora
# Store the training logs in weights and biases
#wandb_entity: shalini_03
#wandb_project: ft_tinyllama-1.1B_alpaca_2k_lora
# The rest of this config stays the same:
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# tinyllama-1.1B_alpaca_2k_lora
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4615 | 0.0816 | 1 | 1.4899 |
| 1.3851 | 0.2449 | 3 | 1.4869 |
| 1.3658 | 0.4898 | 6 | 1.4376 |
| 1.2683 | 0.7347 | 9 | 1.3399 |
| 1.2259 | 0.9796 | 12 | 1.2956 |
| 1.2523 | 1.1633 | 15 | 1.2787 |
| 1.2271 | 1.4082 | 18 | 1.2527 |
| 1.1348 | 1.6531 | 21 | 1.2336 |
| 1.2694 | 1.8980 | 24 | 1.2286 |
| 1.1484 | 2.0816 | 27 | 1.2224 |
| 1.1527 | 2.3265 | 30 | 1.2214 |
| 1.1937 | 2.5714 | 33 | 1.2187 |
| 1.1121 | 2.8163 | 36 | 1.2150 |
| 1.1517 | 3.0612 | 39 | 1.2147 |
| 1.1888 | 3.2449 | 42 | 1.2107 |
| 1.1002 | 3.4898 | 45 | 1.2122 |
| 1.1884 | 3.7347 | 48 | 1.2111 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1