--- license: agpl-3.0 pipeline_tag: object-detection tags: - ultralytics - tracking - instance-segmentation - image-classification - pose-estimation - obb - object-detection - yolo - yolov8 - license_plate - Iran - veichle_lisence_plate --- [Ultralytics](https://www.ultralytics.com/) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks. I fine tuned this model on [this dataset](https://www.kaggle.com/datasets/samyarr/iranvehicleplatedataset) for detecting Iranian veichle license plate. ##
Documentation
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
Install Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/) ```bash pip install ultralytics ``` For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/). [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
Usage ### CLI YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command: ```bash yolo predict model=YOLOv8m_Iran_license_plate_detection.pt source='your_image.jpg' ``` `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples. ### Python YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above: ```python from ultralytics import YOLO # Load a model model = YOLO("local_model_path/YOLOv8m_Iran_license_plate_detection.pt") # Train the model train_results = model.train( data="Iran_license_plate.yaml", # path to dataset YAML epochs=100, # number of training epochs imgsz=640, # training image size device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu ) # Evaluate model performance on the validation set metrics = model.val() # Perform object detection on an image results = model("path/to/image.jpg") results[0].show() # Export the model to ONNX format path = model.export(format="onnx") # return path to exported model ``` ### Inference You can use the model with this code to see how it detects, the style you plot or save detected object is up to you, but here is an example: ```python from ultralytics import YOLO import matplotlib.pyplot as plt import cv2 # Load the YOLO model model = YOLO("path/to/local/model.pt") # Define the input image file path file_path = "path/to/image" # Get the prediction results results = model([file_path]) # Read the input image img = cv2.imread(file_path) # Iterate over the results to extract bounding box and display both input and cropped output for result in results: maxa = result.boxes.conf.argmax() # Get the index of the highest confidence box x, y, w, h = result.boxes.xywh[maxa] # Extract coordinates and size print(f"Bounding box: x={x}, y={y}, w={w}, h={h}") # Crop the detected object from the image crop_img = img[int(y-h/2):int(y+h/2), int(x-w/2):int(x+w/2)] # Convert the image from BGR to RGB for display with matplotlib img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) crop_img_rgb = cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB) # Plot the input image and cropped image side by side plt.figure(figsize=(10, 5)) # Display the input image plt.subplot(1, 2, 1) plt.imshow(img_rgb) plt.title("Input Image") plt.axis("off") # Display the cropped image (output) plt.subplot(1, 2, 2) plt.imshow(crop_img_rgb) plt.title("Cropped Output") plt.axis("off") plt.show() ``` desired output: Bounding box: x=246.37399291992188, y=254.00021362304688, w=146.7321014404297, h=38.26557922363281 ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64fec52b57a40de19102d516%2FrzqKl97C7JDGq40fwLp_h.png) See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.