File size: 5,513 Bytes
17b0d26 ff5781c 17b0d26 4a0a894 17b0d26 a88994a 056e81d a88994a 17b0d26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: agpl-3.0
pipeline_tag: object-detection
tags:
- ultralytics
- tracking
- instance-segmentation
- image-classification
- pose-estimation
- obb
- object-detection
- yolo
- yolov8
- license_plate
- Iran
- veichle_lisence_plate
---
[Ultralytics](https://www.ultralytics.com/) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
I fine tuned this model on [this dataset](https://www.kaggle.com/datasets/samyarr/iranvehicleplatedataset) for detecting Iranian veichle license plate.
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=YOLOv8m_Iran_license_plate_detection.pt source='your_image.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("local_model_path/YOLOv8m_Iran_license_plate_detection.pt")
# Train the model
train_results = model.train(
data="Iran_license_plate.yaml", # path to dataset YAML
epochs=100, # number of training epochs
imgsz=640, # training image size
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)
# Evaluate model performance on the validation set
metrics = model.val()
# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()
# Export the model to ONNX format
path = model.export(format="onnx") # return path to exported model
```
### Inference
You can use the model with this code to see how it detects, the style you plot or save detected object is up to you, but here is an example:
```python
from ultralytics import YOLO
import matplotlib.pyplot as plt
import cv2
# Load the YOLO model
model = YOLO("path/to/local/model.pt")
# Define the input image file path
file_path = "path/to/image"
# Get the prediction results
results = model([file_path])
# Read the input image
img = cv2.imread(file_path)
# Iterate over the results to extract bounding box and display both input and cropped output
for result in results:
maxa = result.boxes.conf.argmax() # Get the index of the highest confidence box
x, y, w, h = result.boxes.xywh[maxa] # Extract coordinates and size
print(f"Bounding box: x={x}, y={y}, w={w}, h={h}")
# Crop the detected object from the image
crop_img = img[int(y-h/2):int(y+h/2), int(x-w/2):int(x+w/2)]
# Convert the image from BGR to RGB for display with matplotlib
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
crop_img_rgb = cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB)
# Plot the input image and cropped image side by side
plt.figure(figsize=(10, 5))
# Display the input image
plt.subplot(1, 2, 1)
plt.imshow(img_rgb)
plt.title("Input Image")
plt.axis("off")
# Display the cropped image (output)
plt.subplot(1, 2, 2)
plt.imshow(crop_img_rgb)
plt.title("Cropped Output")
plt.axis("off")
plt.show()
```
desired output:
Bounding box: x=246.37399291992188, y=254.00021362304688, w=146.7321014404297, h=38.26557922363281
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64fec52b57a40de19102d516%2FrzqKl97C7JDGq40fwLp_h.png%3C%2Fspan%3E)
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
</details> |