File size: 38,808 Bytes
edeaaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
b5847cc
 
 
edeaaa5
b5847cc
 
 
 
 
 
 
 
edeaaa5
 
 
b5847cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edeaaa5
b5847cc
 
 
 
 
 
edeaaa5
 
b5847cc
 
 
 
 
 
 
 
edeaaa5
 
b5847cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edeaaa5
b5847cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edeaaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5847cc
 
edeaaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: >-
    Where in the Annual Report can one find a description of certain legal
    matters and their impact on the company?
  sentences:
  - >-
    Apollo coordinates the delivery of new features, security updates, and
    platform configurations, ensuring the continuous operation of systems in any
    environment. It was introduced commercially in 2021.
  - >-
    In the Annual Report on Form 10-K, 'Item 1A. Risk Factors' provides a
    further description of certain legal matters and their impact on the
    company.
  - During fiscal 2022, we opened four new stores in Mexico.
- source_sentence: How does the company assess uncertain tax positions?
  sentences:
  - >-
    We recognize tax benefits from uncertain tax positions only if we believe
    that it is more likely than not that the tax position will be sustained on
    examination by the taxing authorities based on the technical merits of the
    position.
  - >-
    CMS uses a risk-adjustment model which adjusts premiums paid to Medicare
    Advantage, or MA, plans according to health status of covered members. The
    risk-adjustment model, which CMS implemented pursuant to the Balanced Budget
    Act of 1997 (BBA) and the Benefits Improvement and Protection Act of 2000
    (BIPA), generally pays more where a plan's membership has higher expected
    costs. Under this model, rates paid to MA plans are based on actuarially
    determined bids, which include a process whereby our prospective payments
    are based on our estimated cost of providing standard Medicare-covered
    benefits to an enrollee with a 'national average risk profile.' That
    baseline payment amount is adjusted to account for certain demographic
    characteristics and health status of our enrolled members.
  - >-
    Walmart Inc. reported total revenues of $611,289 million for the fiscal year
    ended January 31, 2023.
- source_sentence: >-
    When does the 364-day facility entered into in August 2023 expire, and what
    is its total amount?
  sentences:
  - In 2023, the total revenue generated by Emgality amounted to 678.3.
  - >-
    In August 2023, we entered into a new 364-day facility. The 364-day facility
    of $3.15 billion expires in August 2024.
  - >-
    Diluted EPS increased $0.09, or 2%, to $5.90 as the decrease in net earnings
    was more than fully offset by a reduction in shares outstanding.
- source_sentence: >-
    What does the company believe adds significant value to its business
    regarding intellectual property?
  sentences:
  - >-
    We believe that, to varying degrees, our trademarks, trade names,
    copyrights, proprietary processes, trade secrets, trade dress, domain names
    and similar intellectual property add significant value to our business
  - >-
    Railroad operating revenues declined 6.9% in 2023 compared to 2022,
    reflecting an overall volume decrease of 5.7% and a decrease in average
    revenue per car/unit of 0.6%, primarily attributable to lower fuel surcharge
    revenue, partially offset by favorable price and mix.
  - >-
    Cash provided by operating activities increased from $26.413 billion in 2022
    to $28.501 billion in 2023, an increase of approximately $2.088 billion.
- source_sentence: >-
    How are government incentives treated in accounting according to the given
    information?
  sentences:
  - >-
    The components of 'Other income (expense), net' for the year ended December
    30, 2023, were $197 million; for December 31, 2022, they were $8 million;
    and for December 25, 2021, they were $55 million.
  - >-
    We are entitled to certain advanced manufacturing production credits under
    the IRA, and government incentives are not accounted for or classified as an
    income tax credit. We account for government incentives as a reduction of
    expense, a reduction of the cost of the capital investment or other income
    based on the substance of the incentive received. Benefits are generally
    recorded when there is reasonable assurance of receipt or, as it relates
    with advanced manufacturing production credits, upon the generation of the
    credit.
  - >-
    Basic net income per share is computed by dividing net income attributable
    to common stock by the weighted-average number of shares of common stock
    outstanding during the period.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Nomic Embed Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7185714285714285
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.87
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9014285714285715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9357142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7185714285714285
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18028571428571427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09357142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7185714285714285
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.87
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9014285714285715
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9357142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8337966812161252
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8004784580498868
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8030662019934727
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7157142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8685714285714285
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9028571428571428
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9342857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7157142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2895238095238095
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18057142857142855
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09342857142857142
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7157142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8685714285714285
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9028571428571428
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9342857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8320816465681472
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7986201814058957
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8013251784905495
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7028571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.86
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8914285714285715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9271428571428572
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7028571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2866666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17828571428571427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09271428571428571
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7028571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.86
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8914285714285715
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9271428571428572
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8208030315973883
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7862023809523814
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7893111186082761
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8428571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8771428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9271428571428572
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28095238095238095
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1754285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09271428571428571
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8428571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8771428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9271428571428572
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8174548081454337
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7820821995464855
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7852661387487447
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.69
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9128571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.69
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1734285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09128571428571428
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.69
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9128571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.804303333645382
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.769315192743764
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7729055647510643
      name: Cosine Map@100
datasets:
- philschmid/finanical-rag-embedding-dataset
---

# Nomic Embed Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision d802ae16c9caed4d197895d27c6d529434cd8c6d -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("shail-2512/nomic-embed-financial-matryoshka")
# Run inference
sentences = [
    'How are government incentives treated in accounting according to the given information?',
    'We are entitled to certain advanced manufacturing production credits under the IRA, and government incentives are not accounted for or classified as an income tax credit. We account for government incentives as a reduction of expense, a reduction of the cost of the capital investment or other income based on the substance of the incentive received. Benefits are generally recorded when there is reasonable assurance of receipt or, as it relates with advanced manufacturing production credits, upon the generation of the credit.',
    'Basic net income per share is computed by dividing net income attributable to common stock by the weighted-average number of shares of common stock outstanding during the period.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.7186     | 0.7157     | 0.7029     | 0.7        | 0.69       |
| cosine_accuracy@3   | 0.87       | 0.8686     | 0.86       | 0.8429     | 0.83       |
| cosine_accuracy@5   | 0.9014     | 0.9029     | 0.8914     | 0.8771     | 0.8671     |
| cosine_accuracy@10  | 0.9357     | 0.9343     | 0.9271     | 0.9271     | 0.9129     |
| cosine_precision@1  | 0.7186     | 0.7157     | 0.7029     | 0.7        | 0.69       |
| cosine_precision@3  | 0.29       | 0.2895     | 0.2867     | 0.281      | 0.2767     |
| cosine_precision@5  | 0.1803     | 0.1806     | 0.1783     | 0.1754     | 0.1734     |
| cosine_precision@10 | 0.0936     | 0.0934     | 0.0927     | 0.0927     | 0.0913     |
| cosine_recall@1     | 0.7186     | 0.7157     | 0.7029     | 0.7        | 0.69       |
| cosine_recall@3     | 0.87       | 0.8686     | 0.86       | 0.8429     | 0.83       |
| cosine_recall@5     | 0.9014     | 0.9029     | 0.8914     | 0.8771     | 0.8671     |
| cosine_recall@10    | 0.9357     | 0.9343     | 0.9271     | 0.9271     | 0.9129     |
| **cosine_ndcg@10**  | **0.8338** | **0.8321** | **0.8208** | **0.8175** | **0.8043** |
| cosine_mrr@10       | 0.8005     | 0.7986     | 0.7862     | 0.7821     | 0.7693     |
| cosine_map@100      | 0.8031     | 0.8013     | 0.7893     | 0.7853     | 0.7729     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 20.65 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 46.29 tokens</li><li>max: 326 tokens</li></ul> |
* Samples:
  | anchor                                                                                           | positive                                                                                                                                                                                                                                                                                             |
  |:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Where is the Investor Relations office of Intuit Inc. located?</code>                      | <code>Copies of this Annual Report on Form 10-K may also be obtained without charge by contacting Investor Relations, Intuit Inc., P.O. Box 7850, Mountain View, California 94039-7850, calling 650-944-6000, or emailing investor_[email protected].</code>                                      |
  | <code>Where is the Financial Statement Schedule located in the Form 10-K?</code>                 | <code>The Financial Statement Schedule is found on page S-1 of the Form 10-K.</code>                                                                                                                                                                                                                 |
  | <code>What factors are considered when evaluating the realization of deferred tax assets?</code> | <code>Many factors are considered when assessing whether it is more likely than not that the deferred tax assets will be realized, including recent cumulative earnings, expectations of future taxable income, carryforward periods and other relevant quantitative and qualitative factors.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### json

* Dataset: json
* Size: 700 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 700 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 20.71 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.74 tokens</li><li>max: 248 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                            | positive                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What fiscal changes did Garmin make in January 2023?</code>                                                                                 | <code>The Company announced an organization realignment in January 2023, which combined the consumer auto operating segment with the outdoor operating segment.</code>                                                                                                                                                                                    |
  | <code>Where are the details about 'Legal Matters' and 'Government Investigations, Audits and Reviews' located in the financial statements?</code> | <code>The information required by this Item 3 is incorporated herein by reference to the information set forth under the captions 'Legal Matters' and 'Government Investigations, Audits and Reviews' in Note 12 of the Notes to the Consolidated Financial Statements included in Part II, Item 8, 'Financial Statements and Supplementary Data'.</code> |
  | <code>Are the pages of IBM's Management’s Discussion and Analysis section in the 2023 Annual Report included in the report itself?</code>         | <code>In IBM’s 2023 Annual Report, the pages containing Management’s Discussion and Analysis of Financial Condition and Results of Operations (pages 6 through 40) are incorporated by reference.</code>                                                                                                                                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:------:|:-------------:|:---------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1015  | 10     | 0.2626        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20     | 0.1764        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.1015  | 10     | 0.0311        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20     | 0.0259        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.1015  | 10     | 0.0056        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20     | 0.0064        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.1015  | 10     | 0.0016        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20     | 0.0015        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.1015  | 10     | 0.0006        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20     | 0.0006        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.3046  | 30     | 0.1324        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.4061  | 40     | 0.113         | -               | -                      | -                      | -                      | -                      | -                     |
| 0.5076  | 50     | 0.128         | -               | -                      | -                      | -                      | -                      | -                     |
| 0.6091  | 60     | 0.1134        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.7107  | 70     | 0.056         | -               | -                      | -                      | -                      | -                      | -                     |
| 0.8122  | 80     | 0.1086        | -               | -                      | -                      | -                      | -                      | -                     |
| 0.9137  | 90     | 0.1008        | -               | -                      | -                      | -                      | -                      | -                     |
| **1.0** | **99** | **-**         | **0.0771**      | **0.8286**             | **0.8306**             | **0.8266**             | **0.8197**             | **0.7955**            |
| 1.0102  | 100    | 0.0491        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.1117  | 110    | 0.0029        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.2132  | 120    | 0.0009        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.3147  | 130    | 0.0326        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.4162  | 140    | 0.0077        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.5178  | 150    | 0.0109        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.6193  | 160    | 0.0047        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.7208  | 170    | 0.004         | -               | -                      | -                      | -                      | -                      | -                     |
| 1.8223  | 180    | 0.0122        | -               | -                      | -                      | -                      | -                      | -                     |
| 1.9239  | 190    | 0.0043        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.0     | 198    | -             | 0.0758          | 0.8296                 | 0.8330                 | 0.8222                 | 0.8169                 | 0.7998                |
| 2.0203  | 200    | 0.0032        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.1218  | 210    | 0.0002        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.2234  | 220    | 0.0002        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.3249  | 230    | 0.0097        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.4264  | 240    | 0.0012        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.5279  | 250    | 0.0012        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.6294  | 260    | 0.0009        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.7310  | 270    | 0.0007        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.8325  | 280    | 0.0019        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.9340  | 290    | 0.0009        | -               | -                      | -                      | -                      | -                      | -                     |
| 2.9746  | 294    | -             | 0.0744          | 0.8338                 | 0.8321                 | 0.8208                 | 0.8175                 | 0.8043                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->