File size: 38,808 Bytes
edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 b5847cc edeaaa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: >-
Where in the Annual Report can one find a description of certain legal
matters and their impact on the company?
sentences:
- >-
Apollo coordinates the delivery of new features, security updates, and
platform configurations, ensuring the continuous operation of systems in any
environment. It was introduced commercially in 2021.
- >-
In the Annual Report on Form 10-K, 'Item 1A. Risk Factors' provides a
further description of certain legal matters and their impact on the
company.
- During fiscal 2022, we opened four new stores in Mexico.
- source_sentence: How does the company assess uncertain tax positions?
sentences:
- >-
We recognize tax benefits from uncertain tax positions only if we believe
that it is more likely than not that the tax position will be sustained on
examination by the taxing authorities based on the technical merits of the
position.
- >-
CMS uses a risk-adjustment model which adjusts premiums paid to Medicare
Advantage, or MA, plans according to health status of covered members. The
risk-adjustment model, which CMS implemented pursuant to the Balanced Budget
Act of 1997 (BBA) and the Benefits Improvement and Protection Act of 2000
(BIPA), generally pays more where a plan's membership has higher expected
costs. Under this model, rates paid to MA plans are based on actuarially
determined bids, which include a process whereby our prospective payments
are based on our estimated cost of providing standard Medicare-covered
benefits to an enrollee with a 'national average risk profile.' That
baseline payment amount is adjusted to account for certain demographic
characteristics and health status of our enrolled members.
- >-
Walmart Inc. reported total revenues of $611,289 million for the fiscal year
ended January 31, 2023.
- source_sentence: >-
When does the 364-day facility entered into in August 2023 expire, and what
is its total amount?
sentences:
- In 2023, the total revenue generated by Emgality amounted to 678.3.
- >-
In August 2023, we entered into a new 364-day facility. The 364-day facility
of $3.15 billion expires in August 2024.
- >-
Diluted EPS increased $0.09, or 2%, to $5.90 as the decrease in net earnings
was more than fully offset by a reduction in shares outstanding.
- source_sentence: >-
What does the company believe adds significant value to its business
regarding intellectual property?
sentences:
- >-
We believe that, to varying degrees, our trademarks, trade names,
copyrights, proprietary processes, trade secrets, trade dress, domain names
and similar intellectual property add significant value to our business
- >-
Railroad operating revenues declined 6.9% in 2023 compared to 2022,
reflecting an overall volume decrease of 5.7% and a decrease in average
revenue per car/unit of 0.6%, primarily attributable to lower fuel surcharge
revenue, partially offset by favorable price and mix.
- >-
Cash provided by operating activities increased from $26.413 billion in 2022
to $28.501 billion in 2023, an increase of approximately $2.088 billion.
- source_sentence: >-
How are government incentives treated in accounting according to the given
information?
sentences:
- >-
The components of 'Other income (expense), net' for the year ended December
30, 2023, were $197 million; for December 31, 2022, they were $8 million;
and for December 25, 2021, they were $55 million.
- >-
We are entitled to certain advanced manufacturing production credits under
the IRA, and government incentives are not accounted for or classified as an
income tax credit. We account for government incentives as a reduction of
expense, a reduction of the cost of the capital investment or other income
based on the substance of the incentive received. Benefits are generally
recorded when there is reasonable assurance of receipt or, as it relates
with advanced manufacturing production credits, upon the generation of the
credit.
- >-
Basic net income per share is computed by dividing net income attributable
to common stock by the weighted-average number of shares of common stock
outstanding during the period.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Nomic Embed Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7185714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.87
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9014285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9357142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7185714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18028571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09357142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7185714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.87
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9014285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9357142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8337966812161252
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8004784580498868
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8030662019934727
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8685714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9028571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9342857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2895238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18057142857142855
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09342857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8685714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9028571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9342857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8320816465681472
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7986201814058957
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8013251784905495
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.86
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8914285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9271428571428572
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2866666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17828571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09271428571428571
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.86
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8914285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9271428571428572
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8208030315973883
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7862023809523814
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7893111186082761
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8771428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9271428571428572
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1754285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09271428571428571
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8771428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9271428571428572
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8174548081454337
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7820821995464855
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7852661387487447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.804303333645382
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.769315192743764
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7729055647510643
name: Cosine Map@100
datasets:
- philschmid/finanical-rag-embedding-dataset
---
# Nomic Embed Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision d802ae16c9caed4d197895d27c6d529434cd8c6d -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("shail-2512/nomic-embed-financial-matryoshka")
# Run inference
sentences = [
'How are government incentives treated in accounting according to the given information?',
'We are entitled to certain advanced manufacturing production credits under the IRA, and government incentives are not accounted for or classified as an income tax credit. We account for government incentives as a reduction of expense, a reduction of the cost of the capital investment or other income based on the substance of the incentive received. Benefits are generally recorded when there is reasonable assurance of receipt or, as it relates with advanced manufacturing production credits, upon the generation of the credit.',
'Basic net income per share is computed by dividing net income attributable to common stock by the weighted-average number of shares of common stock outstanding during the period.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
| cosine_accuracy@3 | 0.87 | 0.8686 | 0.86 | 0.8429 | 0.83 |
| cosine_accuracy@5 | 0.9014 | 0.9029 | 0.8914 | 0.8771 | 0.8671 |
| cosine_accuracy@10 | 0.9357 | 0.9343 | 0.9271 | 0.9271 | 0.9129 |
| cosine_precision@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
| cosine_precision@3 | 0.29 | 0.2895 | 0.2867 | 0.281 | 0.2767 |
| cosine_precision@5 | 0.1803 | 0.1806 | 0.1783 | 0.1754 | 0.1734 |
| cosine_precision@10 | 0.0936 | 0.0934 | 0.0927 | 0.0927 | 0.0913 |
| cosine_recall@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
| cosine_recall@3 | 0.87 | 0.8686 | 0.86 | 0.8429 | 0.83 |
| cosine_recall@5 | 0.9014 | 0.9029 | 0.8914 | 0.8771 | 0.8671 |
| cosine_recall@10 | 0.9357 | 0.9343 | 0.9271 | 0.9271 | 0.9129 |
| **cosine_ndcg@10** | **0.8338** | **0.8321** | **0.8208** | **0.8175** | **0.8043** |
| cosine_mrr@10 | 0.8005 | 0.7986 | 0.7862 | 0.7821 | 0.7693 |
| cosine_map@100 | 0.8031 | 0.8013 | 0.7893 | 0.7853 | 0.7729 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 20.65 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 46.29 tokens</li><li>max: 326 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Where is the Investor Relations office of Intuit Inc. located?</code> | <code>Copies of this Annual Report on Form 10-K may also be obtained without charge by contacting Investor Relations, Intuit Inc., P.O. Box 7850, Mountain View, California 94039-7850, calling 650-944-6000, or emailing investor_[email protected].</code> |
| <code>Where is the Financial Statement Schedule located in the Form 10-K?</code> | <code>The Financial Statement Schedule is found on page S-1 of the Form 10-K.</code> |
| <code>What factors are considered when evaluating the realization of deferred tax assets?</code> | <code>Many factors are considered when assessing whether it is more likely than not that the deferred tax assets will be realized, including recent cumulative earnings, expectations of future taxable income, carryforward periods and other relevant quantitative and qualitative factors.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### json
* Dataset: json
* Size: 700 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 700 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 20.71 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.74 tokens</li><li>max: 248 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What fiscal changes did Garmin make in January 2023?</code> | <code>The Company announced an organization realignment in January 2023, which combined the consumer auto operating segment with the outdoor operating segment.</code> |
| <code>Where are the details about 'Legal Matters' and 'Government Investigations, Audits and Reviews' located in the financial statements?</code> | <code>The information required by this Item 3 is incorporated herein by reference to the information set forth under the captions 'Legal Matters' and 'Government Investigations, Audits and Reviews' in Note 12 of the Notes to the Consolidated Financial Statements included in Part II, Item 8, 'Financial Statements and Supplementary Data'.</code> |
| <code>Are the pages of IBM's Management’s Discussion and Analysis section in the 2023 Annual Report included in the report itself?</code> | <code>In IBM’s 2023 Annual Report, the pages containing Management’s Discussion and Analysis of Financial Condition and Results of Operations (pages 6 through 40) are incorporated by reference.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:------:|:-------------:|:---------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1015 | 10 | 0.2626 | - | - | - | - | - | - |
| 0.2030 | 20 | 0.1764 | - | - | - | - | - | - |
| 0.1015 | 10 | 0.0311 | - | - | - | - | - | - |
| 0.2030 | 20 | 0.0259 | - | - | - | - | - | - |
| 0.1015 | 10 | 0.0056 | - | - | - | - | - | - |
| 0.2030 | 20 | 0.0064 | - | - | - | - | - | - |
| 0.1015 | 10 | 0.0016 | - | - | - | - | - | - |
| 0.2030 | 20 | 0.0015 | - | - | - | - | - | - |
| 0.1015 | 10 | 0.0006 | - | - | - | - | - | - |
| 0.2030 | 20 | 0.0006 | - | - | - | - | - | - |
| 0.3046 | 30 | 0.1324 | - | - | - | - | - | - |
| 0.4061 | 40 | 0.113 | - | - | - | - | - | - |
| 0.5076 | 50 | 0.128 | - | - | - | - | - | - |
| 0.6091 | 60 | 0.1134 | - | - | - | - | - | - |
| 0.7107 | 70 | 0.056 | - | - | - | - | - | - |
| 0.8122 | 80 | 0.1086 | - | - | - | - | - | - |
| 0.9137 | 90 | 0.1008 | - | - | - | - | - | - |
| **1.0** | **99** | **-** | **0.0771** | **0.8286** | **0.8306** | **0.8266** | **0.8197** | **0.7955** |
| 1.0102 | 100 | 0.0491 | - | - | - | - | - | - |
| 1.1117 | 110 | 0.0029 | - | - | - | - | - | - |
| 1.2132 | 120 | 0.0009 | - | - | - | - | - | - |
| 1.3147 | 130 | 0.0326 | - | - | - | - | - | - |
| 1.4162 | 140 | 0.0077 | - | - | - | - | - | - |
| 1.5178 | 150 | 0.0109 | - | - | - | - | - | - |
| 1.6193 | 160 | 0.0047 | - | - | - | - | - | - |
| 1.7208 | 170 | 0.004 | - | - | - | - | - | - |
| 1.8223 | 180 | 0.0122 | - | - | - | - | - | - |
| 1.9239 | 190 | 0.0043 | - | - | - | - | - | - |
| 2.0 | 198 | - | 0.0758 | 0.8296 | 0.8330 | 0.8222 | 0.8169 | 0.7998 |
| 2.0203 | 200 | 0.0032 | - | - | - | - | - | - |
| 2.1218 | 210 | 0.0002 | - | - | - | - | - | - |
| 2.2234 | 220 | 0.0002 | - | - | - | - | - | - |
| 2.3249 | 230 | 0.0097 | - | - | - | - | - | - |
| 2.4264 | 240 | 0.0012 | - | - | - | - | - | - |
| 2.5279 | 250 | 0.0012 | - | - | - | - | - | - |
| 2.6294 | 260 | 0.0009 | - | - | - | - | - | - |
| 2.7310 | 270 | 0.0007 | - | - | - | - | - | - |
| 2.8325 | 280 | 0.0019 | - | - | - | - | - | - |
| 2.9340 | 290 | 0.0009 | - | - | - | - | - | - |
| 2.9746 | 294 | - | 0.0744 | 0.8338 | 0.8321 | 0.8208 | 0.8175 | 0.8043 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |