shahrukhx01
commited on
Commit
·
645947d
1
Parent(s):
908eb0a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fuzzy-matching
|
4 |
+
- fuzzy-search
|
5 |
+
- entity-resolution
|
6 |
+
- record-linking
|
7 |
+
- structured-data-search
|
8 |
+
---
|
9 |
+
A Siamese BERT architecture trained at character levels tokens for embedding based Fuzzy matching.
|
10 |
+
```python
|
11 |
+
import torch
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
from torch import Tensor, device
|
14 |
+
|
15 |
+
def cos_sim(a: Tensor, b: Tensor):
|
16 |
+
"""
|
17 |
+
borrowed from sentence transformers repo
|
18 |
+
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
|
19 |
+
:return: Matrix with res[i][j] = cos_sim(a[i], b[j])
|
20 |
+
"""
|
21 |
+
if not isinstance(a, torch.Tensor):
|
22 |
+
a = torch.tensor(a)
|
23 |
+
|
24 |
+
if not isinstance(b, torch.Tensor):
|
25 |
+
b = torch.tensor(b)
|
26 |
+
|
27 |
+
if len(a.shape) == 1:
|
28 |
+
a = a.unsqueeze(0)
|
29 |
+
|
30 |
+
if len(b.shape) == 1:
|
31 |
+
b = b.unsqueeze(0)
|
32 |
+
|
33 |
+
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
|
34 |
+
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
|
35 |
+
return torch.mm(a_norm, b_norm.transpose(0, 1))
|
36 |
+
|
37 |
+
|
38 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
39 |
+
def mean_pooling(model_output, attention_mask):
|
40 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
41 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
42 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
43 |
+
|
44 |
+
|
45 |
+
# Words we want fuzzy embeddings for
|
46 |
+
word1 = "fuzzformer"
|
47 |
+
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match
|
48 |
+
word2 = "fizzformer"
|
49 |
+
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match
|
50 |
+
words = [word1, word2]
|
51 |
+
# Load model from HuggingFace Hub
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/Fuzzformer')
|
53 |
+
model = AutoModel.from_pretrained('shahrukhx01/Fuzzformer')
|
54 |
+
|
55 |
+
# Tokenize sentences
|
56 |
+
encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt')
|
57 |
+
|
58 |
+
# Compute token embeddings
|
59 |
+
with torch.no_grad():
|
60 |
+
model_output = model(**encoded_input)
|
61 |
+
|
62 |
+
# Perform pooling. In this case, max pooling.
|
63 |
+
fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
64 |
+
|
65 |
+
print("Fuzzy Match score:")
|
66 |
+
print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
|
67 |
+
```
|
68 |
+
|
69 |
+
## ACKNOWLEDGEMENT
|
70 |
+
A big thank you to [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) as their implementation really expedited the implementation of Fuzzformer.
|