--- license: apache-2.0 tags: - generated_from_trainer - audio - automatic-speech-recognition - hf-asr-leaderboard base_model: openai/whisper-small metrics: - wer model-index: - name: names-whisper-en-spectrogram-vanilla results: [] pipeline_tag: automatic-speech-recognition language: - en library_name: transformers --- # names-whisper-en-spectrogram-vanilla This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0402 - Ner percent: 97.9270 - Wer: 1.0079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ner percent | Wer | |:-------------:|:-------:|:----:|:---------------:|:-----------:|:------:| | 0.0037 | 5.0251 | 1000 | 0.0355 | 98.5904 | 0.9814 | | 0.0006 | 10.0503 | 2000 | 0.0369 | 97.6783 | 0.9847 | | 0.0003 | 15.0754 | 3000 | 0.0386 | 97.6783 | 0.9947 | | 0.0002 | 20.1005 | 4000 | 0.0397 | 97.9270 | 1.0079 | | 0.0002 | 25.1256 | 5000 | 0.0402 | 97.9270 | 1.0079 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1