--- base_model: openai/whisper-small library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: names-whisper-en-spectrogram-pitch-shifted results: [] --- # names-whisper-en-spectrogram-pitch-shifted This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2384 - Ner percent: 101.9340 - Wer: 5.3520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ner percent | Wer | |:-------------:|:-------:|:----:|:---------------:|:-----------:|:------:| | 0.036 | 5.0251 | 1000 | 0.2288 | 99.9682 | 6.2317 | | 0.0013 | 10.0503 | 2000 | 0.2292 | 97.7273 | 5.6542 | | 0.0005 | 15.0754 | 3000 | 0.2334 | 102.4688 | 5.3084 | | 0.0003 | 20.1005 | 4000 | 0.2368 | 101.9340 | 5.3621 | | 0.0003 | 25.1256 | 5000 | 0.2384 | 101.9340 | 5.3520 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1