--- license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small metrics: - wer model-index: - name: names-whisper-en-spectrogram-original results: [] --- # names-whisper-en-spectrogram-original This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1720 - Ner percent: 105.0286 - Wer: 5.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ner percent | Wer | |:-------------:|:-------:|:----:|:---------------:|:-----------:|:------:| | 0.0081 | 5.1546 | 1000 | 0.1413 | 104.8314 | 5.9866 | | 0.0017 | 10.3093 | 2000 | 0.1528 | 104.7256 | 5.8949 | | 0.0007 | 15.4639 | 3000 | 0.1628 | 105.3074 | 5.9764 | | 0.0005 | 20.6186 | 4000 | 0.1690 | 104.9219 | 5.9764 | | 0.0004 | 25.7732 | 5000 | 0.1720 | 105.0286 | 5.9900 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1