--- license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small metrics: - wer model-index: - name: names-whisper-en-spectrogram-new-method results: [] --- # names-whisper-en-spectrogram-new-method This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0374 - Ner percent: 98.7838 - Wer: 0.8407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ner percent | Wer | |:-------------:|:-------:|:----:|:---------------:|:-----------:|:------:| | 0.0039 | 5.0505 | 1000 | 0.0352 | 97.8378 | 1.1843 | | 0.0005 | 10.1010 | 2000 | 0.0350 | 98.9189 | 0.8674 | | 0.0003 | 15.1515 | 3000 | 0.0361 | 98.7838 | 0.8340 | | 0.0002 | 20.2020 | 4000 | 0.0370 | 98.7838 | 0.8373 | | 0.0002 | 25.2525 | 5000 | 0.0374 | 98.7838 | 0.8407 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1