File size: 7,845 Bytes
bf155cb 2923fee bf155cb 2923fee bf155cb 2923fee 02ad156 2923fee 02ad156 2923fee 02ad156 2923fee 02ad156 2923fee 02ad156 2923fee 02ad156 2923fee 02ad156 bf155cb ccad0ad c3ff6d0 ccad0ad dce7839 3e1bdc8 bf155cb ccad0ad fa4805f 3e1bdc8 ccad0ad 3f08382 ccad0ad bf155cb 3f08382 2923fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
inference: false
base_model:
- senseable/Westlake-7B
- Guilherme34/Samantha-v2
- uukuguy/speechless-mistral-six-in-one-7b
pipeline_tag: text-generation
model-index:
- name: sethuiyer/Nandine-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.83
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.1
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
---
# Nandine-7b
<p align="center">
<img src="https://huggingface.co/sethuiyer/Nandine-7b/resolve/main/nandine.webp" height="128px" alt="Nandine">
</p>
This is Nandine-7b, rated **87.47/100** by GPT-4 on a collection of 30 synthetic prompts generated by GPT-4.
Nandine-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [senseable/Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)
* [uukuguy/speechless-mistral-six-in-one-7b](https://huggingface.co/uukuguy/speechless-mistral-six-in-one-7b)
Nandine-7b represents a harmonious amalgamation of narrative skill, empathetic interaction, intellectual depth, and eloquent communication.
## OpenLLM Benchmark
| Model | Average ⬆️ | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|--------------------------------|------------|-------|-----------|-------|------------|------------|-------|
| sethuiyer/Nandine-7b 📑 | 71.47 | 69.28 | 87.01 | 64.83 | 62.1 | 83.19 | 62.4 |
## Nous Benchmark
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Nandine-7b](https://huggingface.co/sethuiyer/Nandine-7b)| 43.54| 76.41| 61.73| 45.27| 56.74|
For more details, refer [here](https://huggingface.co/sethuiyer/Nandine-7b/blob/main/EVAL.md)
**Pros:**
1. **Strong Narrative Skills:** Excels in storytelling, creating engaging and imaginative narratives.
2. **Accurate Information Delivery:** Provides factual and detailed information across various topics.
3. **Comprehensive Analysis:** Capable of well-rounded discussions on complex and ethical topics.
4. **Emotional Intelligence:** Shows empathy and understanding in responses requiring emotional sensitivity.
5. **Clarity and Structure:** Maintains clear and well-structured communication.
**Cons:**
1. **Language Translation Limitations:** Challenges in providing fluent and natural translations.
2. **Incomplete Problem Solving:** Some logical or mathematical problems are not solved accurately.
3. **Lack of Depth in Certain Areas:** Needs deeper exploration in some responses for a more comprehensive understanding.
4. **Occasional Imbalance in Historical Context:** Some historical explanations could be more balanced.
5. **Room for Enhanced Creativity:** While creative storytelling is strong, there's potential for more varied responses in hypothetical scenarios.
**Intended Use:**
Ideal for users seeking a versatile AI companion for creative writing, thoughtful discussions, and general assistance.
## 🧩 Configuration
```yaml
models:
- model: senseable/Westlake-7B
parameters:
weight: 0.55
density: 0.6
- model: Guilherme34/Samantha-v2
parameters:
weight: 0.10
density: 0.3
- model: uukuguy/speechless-mistral-six-in-one-7b
parameters:
weight: 0.35
density: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/Nandine-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## GGUF
GGUF files are available at [Nandine-7b-GGUF](https://huggingface.co/sethuiyer/Nandine-7b-GGUF/tree/main)
## Ollama
Nandine is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/nandine``` in your
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
a Google Colab backend.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Nandine-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.47|
|AI2 Reasoning Challenge (25-Shot)|69.28|
|HellaSwag (10-Shot) |87.01|
|MMLU (5-Shot) |64.83|
|TruthfulQA (0-shot) |62.10|
|Winogrande (5-shot) |83.19|
|GSM8k (5-shot) |62.40|
|