File size: 7,845 Bytes
bf155cb
2923fee
 
 
 
bf155cb
 
 
 
2923fee
bf155cb
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923fee
02ad156
bf155cb
 
 
 
ccad0ad
c3ff6d0
ccad0ad
 
dce7839
3e1bdc8
bf155cb
 
 
 
 
ccad0ad
 
fa4805f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1bdc8
 
 
 
 
 
 
 
 
 
 
 
 
ccad0ad
 
3f08382
ccad0ad
bf155cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f08382
 
 
 
 
 
 
 
2923fee
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
inference: false
base_model:
- senseable/Westlake-7B
- Guilherme34/Samantha-v2
- uukuguy/speechless-mistral-six-in-one-7b
pipeline_tag: text-generation
model-index:
- name: sethuiyer/Nandine-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.01
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 62.1
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 62.4
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
      name: Open LLM Leaderboard
---

# Nandine-7b

<p align="center">
  <img src="https://huggingface.co/sethuiyer/Nandine-7b/resolve/main/nandine.webp" height="128px" alt="Nandine">
</p>

This is Nandine-7b, rated **87.47/100** by GPT-4 on a collection of 30 synthetic prompts generated by GPT-4.

Nandine-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [senseable/Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)
* [uukuguy/speechless-mistral-six-in-one-7b](https://huggingface.co/uukuguy/speechless-mistral-six-in-one-7b)

Nandine-7b represents a harmonious amalgamation of narrative skill, empathetic interaction, intellectual depth, and eloquent communication.

## OpenLLM Benchmark

| Model                          | Average ⬆️ | ARC    | HellaSwag | MMLU  | TruthfulQA | Winogrande | GSM8K | 
|--------------------------------|------------|-------|-----------|-------|------------|------------|-------| 
| sethuiyer/Nandine-7b 📑       | 71.47      | 69.28 | 87.01     | 64.83 | 62.1       | 83.19      | 62.4  | 


## Nous Benchmark
|                          Model                          |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Nandine-7b](https://huggingface.co/sethuiyer/Nandine-7b)|  43.54|  76.41|     61.73|   45.27|  56.74|

For more details, refer [here](https://huggingface.co/sethuiyer/Nandine-7b/blob/main/EVAL.md)


**Pros:**
1. **Strong Narrative Skills:** Excels in storytelling, creating engaging and imaginative narratives.
2. **Accurate Information Delivery:** Provides factual and detailed information across various topics.
3. **Comprehensive Analysis:** Capable of well-rounded discussions on complex and ethical topics.
4. **Emotional Intelligence:** Shows empathy and understanding in responses requiring emotional sensitivity.
5. **Clarity and Structure:** Maintains clear and well-structured communication.

**Cons:**
1. **Language Translation Limitations:** Challenges in providing fluent and natural translations.
2. **Incomplete Problem Solving:** Some logical or mathematical problems are not solved accurately.
3. **Lack of Depth in Certain Areas:** Needs deeper exploration in some responses for a more comprehensive understanding.
4. **Occasional Imbalance in Historical Context:** Some historical explanations could be more balanced.
5. **Room for Enhanced Creativity:** While creative storytelling is strong, there's potential for more varied responses in hypothetical scenarios.

**Intended Use:**
Ideal for users seeking a versatile AI companion for creative writing, thoughtful discussions, and general assistance.

## 🧩 Configuration

```yaml
models:
  - model: senseable/Westlake-7B
    parameters:
      weight: 0.55
      density: 0.6
  - model: Guilherme34/Samantha-v2
    parameters:
      weight: 0.10
      density: 0.3
  - model: uukuguy/speechless-mistral-six-in-one-7b
    parameters:
      weight: 0.35
      density: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sethuiyer/Nandine-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## GGUF
GGUF files are available at [Nandine-7b-GGUF](https://huggingface.co/sethuiyer/Nandine-7b-GGUF/tree/main)

## Ollama
Nandine is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/nandine``` in your 
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on 
a Google Colab backend.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Nandine-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |71.47|
|AI2 Reasoning Challenge (25-Shot)|69.28|
|HellaSwag (10-Shot)              |87.01|
|MMLU (5-Shot)                    |64.83|
|TruthfulQA (0-shot)              |62.10|
|Winogrande (5-shot)              |83.19|
|GSM8k (5-shot)                   |62.40|