sergioburdisso commited on
Commit
879865d
·
verified ·
1 Parent(s): 24d9088

Push model to huggingface

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -1,25 +1,16 @@
1
  ---
2
- language: en
3
- license: mit
4
- library_name: sentence-transformers
5
  tags:
6
  - sentence-transformers
 
7
  - sentence-similarity
8
- - task-oriented-dialogues
9
- - dialog-flow
10
- datasets:
11
- - Salesforce/dialogstudio
12
- pipeline_tag: sentence-similarity
13
- base_model:
14
- - google-bert/bert-base-uncased
15
- ---
16
 
 
17
 
18
- # Dialog2Flow single target (BERT-base)
19
-
20
- This is the original **D2F$_{single}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
21
 
22
- Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
23
 
24
  <!--- Describe your model here -->
25
 
@@ -35,7 +26,7 @@ Then you can use the model like this:
35
 
36
  ```python
37
  from sentence_transformers import SentenceTransformer
38
- sentences = ["your phone please", "okay may i have your telephone number please"]
39
 
40
  model = SentenceTransformer('sergioburdisso/dialog2flow-single-bert-base')
41
  embeddings = model.encode(sentences)
@@ -60,7 +51,7 @@ def mean_pooling(model_output, attention_mask):
60
 
61
 
62
  # Sentences we want sentence embeddings for
63
- sentences = ['your phone please', 'okay may i have your telephone number please']
64
 
65
  # Load model from HuggingFace Hub
66
  tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-single-bert-base')
@@ -80,23 +71,21 @@ print("Sentence embeddings:")
80
  print(sentence_embeddings)
81
  ```
82
 
83
- ## Training
84
- The model was trained with the parameters:
85
 
86
- **DataLoader**:
87
 
88
- `torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
89
- ```
90
- {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
 
93
- **Loss**:
94
 
95
- `spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
 
 
 
 
96
 
97
  **DataLoader**:
98
 
99
- `torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
100
  ```
101
  {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
102
  ```
@@ -109,7 +98,7 @@ Parameters of the fit()-Method:
109
  ```
110
  {
111
  "epochs": 15,
112
- "evaluation_steps": 164,
113
  "evaluator": [
114
  "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
115
  ],
@@ -135,22 +124,4 @@ SentenceTransformer(
135
 
136
  ## Citing & Authors
137
 
138
-
139
- ```bibtex
140
- @inproceedings{burdisso-etal-2024-dialog2flow,
141
- title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
142
- author = "Burdisso, Sergio and
143
- Madikeri, Srikanth and
144
- Motlicek, Petr",
145
- booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
146
- month = nov,
147
- year = "2024",
148
- address = "Miami",
149
- publisher = "Association for Computational Linguistics",
150
- }
151
- ```
152
-
153
- ## License
154
-
155
- Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
156
- MIT License.
 
1
  ---
2
+ pipeline_tag: sentence-similarity
 
 
3
  tags:
4
  - sentence-transformers
5
+ - feature-extraction
6
  - sentence-similarity
7
+ - transformers
 
 
 
 
 
 
 
8
 
9
+ ---
10
 
11
+ # sergioburdisso/dialog2flow-single-bert-base
 
 
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
  model = SentenceTransformer('sergioburdisso/dialog2flow-single-bert-base')
32
  embeddings = model.encode(sentences)
 
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
  tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-single-bert-base')
 
71
  print(sentence_embeddings)
72
  ```
73
 
 
 
74
 
 
75
 
76
+ ## Evaluation Results
 
 
 
77
 
78
+ <!--- Describe how your model was evaluated -->
79
 
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sergioburdisso/dialog2flow-single-bert-base)
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
 
86
  **DataLoader**:
87
 
88
+ `torch.utils.data.dataloader.DataLoader` of length 24615 with parameters:
89
  ```
90
  {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
  ```
 
98
  ```
99
  {
100
  "epochs": 15,
101
+ "evaluation_steps": 246,
102
  "evaluator": [
103
  "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
104
  ],
 
124
 
125
  ## Citing & Authors
126
 
127
+ <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
  "architectures": [
4
  "BertModel"
5
  ],
@@ -8,14 +8,14 @@
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
  "initializer_range": 0.02,
13
- "intermediate_size": 1536,
14
  "layer_norm_eps": 1e-12,
15
  "max_position_embeddings": 512,
16
  "model_type": "bert",
17
  "num_attention_heads": 12,
18
- "num_hidden_layers": 6,
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
 
1
  {
2
+ "_name_or_path": "/idiap/temp/sburdisso/repos/jsalt/keya-dialog/outputs/tod_all/bert-base-uncased/soft-labels/label_multi-qa-mpnet-base-dot-v1_t0.35/msl64_pm-mean/ch-on_t0.05/lr3e-06_bs64_e15/best_model_metric_0",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
  "layer_norm_eps": 1e-12,
15
  "max_position_embeddings": 512,
16
  "model_type": "bert",
17
  "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.6.1",
5
- "pytorch": "1.8.1"
6
  }
7
  }
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.2",
5
+ "pytorch": "2.0.1"
6
  }
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
3
- size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b52bd99938d67ad3acab3856640ea0341897c9bad7921f7a0a1b073bb3080dc
3
+ size 437951328
modules.json CHANGED
@@ -10,11 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 256,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 64,
3
  "do_lower_case": false
4
  }
tokenizer.json CHANGED
@@ -2,14 +2,12 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 128,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
- "strategy": {
11
- "Fixed": 128
12
- },
13
  "direction": "Right",
14
  "pad_to_multiple_of": null,
15
  "pad_id": 0,
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 64,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
+ "strategy": "BatchLongest",
 
 
11
  "direction": "Right",
12
  "pad_to_multiple_of": null,
13
  "pad_id": 0,
tokenizer_config.json CHANGED
@@ -43,12 +43,10 @@
43
  },
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
- "max_length": 128,
50
  "model_max_length": 512,
51
- "never_split": null,
52
  "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
  "pad_token_type_id": 0,
 
43
  },
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
 
46
  "do_lower_case": true,
47
  "mask_token": "[MASK]",
48
+ "max_length": 64,
49
  "model_max_length": 512,
 
50
  "pad_to_multiple_of": null,
51
  "pad_token": "[PAD]",
52
  "pad_token_type_id": 0,