sergeyzh commited on
Commit
f17cd13
·
verified ·
1 Parent(s): a511bf3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -1
README.md CHANGED
@@ -14236,7 +14236,7 @@ model-index:
14236
  ---
14237
 
14238
 
14239
- Быстрая модель BERT для расчетов эмбедингов предложений на русском языке. Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) - имеет аналогичные размеры контекста (2048), ембединга (312) и быстродействие.
14240
 
14241
 
14242
 
@@ -14252,6 +14252,7 @@ print(util.dot_score(embeddings, embeddings))
14252
  ```
14253
 
14254
  ## Метрики
 
14255
  Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka):
14256
 
14257
  | model | CPU | GPU | size | Mean S | Mean S+W | dim |
@@ -14274,5 +14275,38 @@ print(util.dot_score(embeddings, embeddings))
14274
  | intfloat/multilingual-e5-small | 0.822 | 0.714 | 0.457 | 0.758 | 0.957 | 0.761 | 0.779 | 0.691 | 0.234 | 0.275 |
14275
  | cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 | 0.746 | 0.757 | 0.638 | 0.360 | 0.386 |
14276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14277
 
14278
 
 
14236
  ---
14237
 
14238
 
14239
+ Быстрая модель BERT для расчетов эмбеддингов предложений на русском языке. Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) - имеет аналогичные размеры контекста (2048), ембединга (312) и быстродействие.
14240
 
14241
 
14242
 
 
14252
  ```
14253
 
14254
  ## Метрики
14255
+
14256
  Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka):
14257
 
14258
  | model | CPU | GPU | size | Mean S | Mean S+W | dim |
 
14275
  | intfloat/multilingual-e5-small | 0.822 | 0.714 | 0.457 | 0.758 | 0.957 | 0.761 | 0.779 | 0.691 | 0.234 | 0.275 |
14276
  | cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 | 0.746 | 0.757 | 0.638 | 0.360 | 0.386 |
14277
 
14278
+ Оценки модели на бенчмарке [ruMTEB](https://habr.com/ru/companies/sberdevices/articles/831150/):
14279
+
14280
+ |Model Name | Metric | sbert_large_mt_nlu_ru | sbert_large_nlu_ru | rubert-tiny2 | rubert-tiny-turbo | multilingual-e5-small | multilingual-e5-base | multilingual-e5-large |
14281
+ |:----------------------------------|:--------------------|-----------------------:|--------------------:|----------------:|------------------:|----------------------:|---------------------:|----------------------:|
14282
+ |CEDRClassification | Accuracy | 0.368 | 0.358 | 0.369 | 0.390 | 0.401 | 0.423 | **0.448** |
14283
+ |GeoreviewClassification | Accuracy | 0.397 | 0.400 | 0.396 | 0.414 | 0.447 | 0.461 | **0.497** |
14284
+ |GeoreviewClusteringP2P | V-measure | 0.584 | 0.590 | 0.442 | 0.597 | 0.586 | 0.545 | **0.605** |
14285
+ |HeadlineClassification | Accuracy | 0.772 | **0.793** | 0.742 | 0.686 | 0.732 | 0.757 | 0.758 |
14286
+ |InappropriatenessClassification | Accuracy | **0.646** | 0.625 | 0.586 | 0.591 | 0.592 | 0.588 | 0.616 |
14287
+ |KinopoiskClassification | Accuracy | 0.503 | 0.495 | 0.491 | 0.505 | 0.500 | 0.509 | **0.566** |
14288
+ |RiaNewsRetrieval | NDCG@10 | 0.214 | 0.111 | 0.140 | 0.513 | 0.700 | 0.702 | **0.807** |
14289
+ |RuBQReranking | MAP@10 | 0.561 | 0.468 | 0.461 | 0.622 | 0.715 | 0.720 | **0.756** |
14290
+ |RuBQRetrieval | NDCG@10 | 0.298 | 0.124 | 0.109 | 0.517 | 0.685 | 0.696 | **0.741** |
14291
+ |RuReviewsClassification | Accuracy | 0.589 | 0.583 | 0.570 | 0.607 | 0.612 | 0.630 | **0.653** |
14292
+ |RuSTSBenchmarkSTS | Pearson correlation | 0.712 | 0.588 | 0.694 | 0.787 | 0.781 | 0.796 | **0.831** |
14293
+ |RuSciBenchGRNTIClassification | Accuracy | 0.542 | 0.539 | 0.456 | 0.529 | 0.550 | 0.563 | **0.582** |
14294
+ |RuSciBenchGRNTIClusteringP2P | V-measure | **0.522** | 0.504 | 0.414 | 0.481 | 0.511 | 0.516 | 0.520 |
14295
+ |RuSciBenchOECDClassification | Accuracy | 0.438 | 0.430 | 0.355 | 0.415 | 0.427 | 0.423 | **0.445** |
14296
+ |RuSciBenchOECDClusteringP2P | V-measure | **0.473** | 0.464 | 0.381 | 0.411 | 0.443 | 0.448 | 0.450 |
14297
+ |SensitiveTopicsClassification | Accuracy | **0.285** | 0.280 | 0.220 | 0.244 | 0.228 | 0.234 | 0.257 |
14298
+ |TERRaClassification | Average Precision | 0.520 | 0.502 | 0.519 | 0.563 | 0.551 | 0.550 | **0.584** |
14299
+
14300
+ |Model Name | Metric | sbert_large_mt_nlu_ru | sbert_large_nlu_ru | rubert-tiny2 | rubert-tiny-turbo | multilingual-e5-small | multilingual-e5-base | multilingual-e5-large |
14301
+ |:----------------------------------|:--------------------|-----------------------:|--------------------:|----------------:|------------------:|----------------------:|----------------------:|---------------------:|
14302
+ |Classification | Accuracy | 0,554 | 0,552 | 0,514 | 0,535 | 0,551 | 0,561 | **0,588** |
14303
+ |Clustering | V-measure | **0,526** | 0,519 | 0,412 | 0,496 | 0,513 | 0,503 | 0,525 |
14304
+ |MultiLabelClassification | Accuracy | 0,326 | 0,319 | 0,294 | 0,317 | 0,314 | 0,329 | **0,353** |
14305
+ |PairClassification | Average Precision | 0,520 | 0,502 | 0,519 | 0,563 | 0,551 | 0,550 | **0,584** |
14306
+ |Reranking | MAP@10 | 0,561 | 0,468 | 0,461 | 0,622 | 0,715 | 0,720 | **0,756** |
14307
+ |Retrieval | NDCG@10 | 0,256 | 0,118 | 0,124 | 0,515 | 0,697 | 0,699 | **0,774** |
14308
+ |STS | Pearson correlation | 0,712 | 0,588 | 0,694 | 0,787 | 0,781 | 0,796 | **0,831** |
14309
+ |Average | Average | 0,494 | 0,438 | 0,431 | 0,548 | 0,588 | 0,594 | **0,630** |
14310
+
14311
 
14312