nreimers commited on
Commit
e427b28
·
1 Parent(s): 604ca80

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,22 +1,42 @@
1
- # Sentence Embedding Model for MS MARCO Passage Retrieval
 
 
 
 
 
 
 
2
 
 
3
 
4
- This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages.
5
 
6
- You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) and [SBERT.net - Information Retrieval](https://www.sbert.net/examples/applications/information-retrieval/README.html)
7
 
8
 
9
- ## Training
10
 
11
- Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html)
12
 
13
- ## Performance
 
 
14
 
15
- For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v3.html)
16
 
17
- ## Usage (HuggingFace Models Repository)
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- You can use the model directly from the model repository to compute sentence embeddings:
20
  ```python
21
  from transformers import AutoTokenizer, AutoModel
22
  import torch
@@ -26,68 +46,54 @@ import torch
26
  def mean_pooling(model_output, attention_mask):
27
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
28
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
29
- sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
30
- sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
31
- return sum_embeddings / sum_mask
32
-
33
 
34
 
35
- # Queries we want embeddings for
36
- queries = ['What is the capital of France?', 'How many people live in New York City?']
37
 
38
- # Passages that provide answers
39
- passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019']
 
40
 
41
- #Load AutoModel from huggingface model repository
42
- tokenizer = AutoTokenizer.from_pretrained("model_name")
43
- model = AutoModel.from_pretrained("model_name")
44
 
45
- def compute_embeddings(sentences):
46
- #Tokenize sentences
47
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
48
 
49
- #Compute query embeddings
50
- with torch.no_grad():
51
- model_output = model(**encoded_input)
52
 
53
- #Perform pooling. In this case, mean pooling
54
- return mean_pooling(model_output, encoded_input['attention_mask'])
55
-
56
- query_embeddings = compute_embeddings(queries)
57
- passage_embeddings = compute_embeddings(passages)
58
  ```
59
 
60
- ## Usage (Sentence-Transformers)
61
- Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
62
- ```
63
- pip install -U sentence-transformers
64
- ```
65
 
66
- Then you can use the model like this:
67
- ```python
68
- from sentence_transformers import SentenceTransformer
69
- model = SentenceTransformer('model_name')
70
 
71
- # Queries we want embeddings for
72
- queries = ['What is the capital of France?', 'How many people live in New York City?']
73
 
74
- # Passages that provide answers
75
- passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019']
76
 
77
- query_embeddings = model.encode(queries)
78
- passage_embeddings = model.encode(passages)
79
- ```
80
 
81
- ## Changes in v3
82
- The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question.
83
 
84
- If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder.
85
 
86
- We then trained the v2 models with these new hard negatives.
 
 
 
 
 
 
87
 
88
  ## Citing & Authors
 
 
 
89
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
90
- ```
91
  @inproceedings{reimers-2019-sentence-bert,
92
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
93
  author = "Reimers, Nils and Gurevych, Iryna",
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
 
10
+ # sentence-transformers/msmarco-distilbert-base-v3
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
14
 
15
 
16
+ ## Usage (Sentence-Transformers)
17
 
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
 
24
+ Then you can use the model like this:
25
 
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v3')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
 
 
40
  ```python
41
  from transformers import AutoTokenizer, AutoModel
42
  import torch
 
46
  def mean_pooling(model_output, attention_mask):
47
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
 
 
 
50
 
51
 
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-base-v3')
57
+ model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-base-v3')
58
 
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
61
 
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
 
66
+ # Perform pooling. In this case, max pooling.
67
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
 
68
 
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
 
 
 
71
  ```
72
 
 
 
 
 
 
73
 
 
 
 
 
74
 
75
+ ## Evaluation Results
 
76
 
 
 
77
 
 
 
 
78
 
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-v3)
80
+
81
 
 
82
 
83
+ ## Full Model Architecture
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 510, 'do_lower_case': False}) with Transformer model: DistilBertModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
88
+ )
89
+ ```
90
 
91
  ## Citing & Authors
92
+
93
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
94
+
95
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
96
+ ```bibtex
97
  @inproceedings{reimers-2019-sentence-bert,
98
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
99
  author = "Reimers, Nils and Gurevych, Iryna",
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/home/ukp-reimers/.cache/torch/sentence_transformers/sbert.net_models_msmarco-distilbert-base-v2/0_Transformer",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertModel"
@@ -18,6 +18,6 @@
18
  "seq_classif_dropout": 0.2,
19
  "sinusoidal_pos_embds": false,
20
  "tie_weights_": true,
21
- "transformers_version": "4.2.2",
22
  "vocab_size": 30522
23
  }
 
1
  {
2
+ "_name_or_path": "old_models/msmarco-distilbert-base-v3/0_Transformer",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertModel"
 
18
  "seq_classif_dropout": 0.2,
19
  "sinusoidal_pos_embds": false,
20
  "tie_weights_": true,
21
+ "transformers_version": "4.7.0",
22
  "vocab_size": 30522
23
  }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b63655c81bf1f7a3511576a11000e81a75f80d5085b29ec43b832e10b467fa6d
3
- size 265491187
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd45d9ca79b39816515bc315181aee89a158244523459f48413fcc7f33bc7ff
3
+ size 265486777
sentence_bert_config.json CHANGED
@@ -1,3 +1,4 @@
1
  {
2
- "max_seq_length": 350
 
3
  }
 
1
  {
2
+ "max_seq_length": 510,
3
+ "do_lower_case": false
4
  }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "/home/ukp-reimers/.cache/torch/sentence_transformers/sbert.net_models_msmarco-distilbert-base-v2/0_Transformer", "special_tokens_map_file": "/home/ukp-reimers/.cache/torch/sentence_transformers/sbert.net_models_msmarco-distilbert-base-v2/0_Transformer/special_tokens_map.json", "do_basic_tokenize": true, "never_split": null}
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "old_models/msmarco-distilbert-base-v3/0_Transformer", "special_tokens_map_file": "/home/ukp-reimers/.cache/torch/sentence_transformers/sbert.net_models_msmarco-distilbert-base-v2/0_Transformer/special_tokens_map.json", "do_basic_tokenize": true, "never_split": null}