File size: 5,887 Bytes
2ce4ba7
e34d4b0
 
 
e25cfab
 
2ce4ba7
e25cfab
838ea3d
 
 
e34d4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838ea3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34d4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- code
- moe
datasets:
- andersonbcdefg/synthetic_retrieval_tasks
- ise-uiuc/Magicoder-Evol-Instruct-110K
metrics:
- code_eval
model-index:
- name: moe-x33
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 26.19
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 26.44
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.93
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 51.14
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
      name: Open LLM Leaderboard
---


# 33x Coding Model

33x-coder is a powerful Llama based model available on Hugging Face, designed to assist and augment coding tasks. Leveraging the capabilities of advanced language models, 33x-coder specializes in understanding and generating code. This model is trained on a diverse range of programming languages and coding scenarios, making it a versatile tool for developers looking to streamline their coding process. Whether you're debugging, seeking coding advice, or generating entire scripts, 33x-coder can provide relevant, syntactically correct code snippets and comprehensive programming guidance. Its intuitive understanding of coding languages and constructs makes it an invaluable asset for any coding project, helping to reduce development time and improve code quality.

## Importing necessary libraries from transformers
```
from transformers import AutoTokenizer, AutoModelForCausalLM
```

## Initialize the tokenizer and model 
```
tokenizer = AutoTokenizer.from_pretrained("senseable/33x-coder")
model = AutoModelForCausalLM.from_pretrained("senseable/33x-coder").cuda()
```

# User's request for a quick sort algorithm in Python
```
messages = [
    {'role': 'user', 'content': "Write a Python function to check if a number is prime."}
]
```

## Preparing the input for the model by encoding the messages and sending them to the same device as the model
```
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
```

## Generating responses from the model with specific parameters for text generation
```
outputs = model.generate(
    inputs, 
    max_new_tokens=512,      # Maximum number of new tokens to generate
    do_sample=False,         # Disable random sampling to get the most likely next token
    top_k=50,                # The number of highest probability vocabulary tokens to keep for top-k-filtering
    top_p=0.95,              # Nucleus sampling: keeps the top p probability mass worth of tokens
    num_return_sequences=1,  # The number of independently computed returned sequences for each element in the batch
    eos_token_id=32021,      # End of sequence token id
    add_generation_prompt=True
)
```

## Decoding and printing the generated response

```
start_index = len(inputs[0])
generated_output_tokens = outputs[0][start_index:]
decoded_output = tokenizer.decode(generated_output_tokens, skip_special_tokens=True)
print("Generated Code:\n", decoded_output)
```

---
license: apache-2.0
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_senseable__moe-x33)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |29.95|
|AI2 Reasoning Challenge (25-Shot)|26.19|
|HellaSwag (10-Shot)              |26.44|
|MMLU (5-Shot)                    |24.93|
|TruthfulQA (0-shot)              |51.14|
|Winogrande (5-shot)              |50.99|
|GSM8k (5-shot)                   | 0.00|