--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: google/vit-base-patch16-224-in21k model-index: - name: derma-vit-base-finetuned results: [] --- # derma-vit-base-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6179 - Accuracy: 0.7677 - Precision: 0.5889 - Recall: 0.4796 - F1: 0.5088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7579 | 1.0 | 109 | 0.7045 | 0.7428 | 0.5204 | 0.3710 | 0.3927 | | 0.7689 | 2.0 | 219 | 0.7512 | 0.7278 | 0.3964 | 0.3527 | 0.3573 | | 0.7353 | 3.0 | 328 | 0.7191 | 0.7358 | 0.4630 | 0.4202 | 0.4002 | | 0.8429 | 4.0 | 438 | 0.7858 | 0.6810 | 0.4280 | 0.1813 | 0.1851 | | 0.7929 | 5.0 | 547 | 0.7013 | 0.7218 | 0.5158 | 0.3971 | 0.3523 | | 0.6804 | 6.0 | 657 | 0.6822 | 0.7607 | 0.5011 | 0.4240 | 0.4391 | | 0.6922 | 7.0 | 766 | 0.6533 | 0.7667 | 0.6762 | 0.5106 | 0.5227 | | 0.6563 | 8.0 | 876 | 0.6758 | 0.7468 | 0.4548 | 0.4589 | 0.4496 | | 0.6985 | 9.0 | 985 | 0.6264 | 0.7647 | 0.6451 | 0.4692 | 0.4915 | | 0.6283 | 9.95 | 1090 | 0.6179 | 0.7677 | 0.5889 | 0.4796 | 0.5088 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2