selmamalak
commited on
Model save
Browse files- README.md +82 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- medmnist-v2
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
base_model: google/vit-base-patch16-224-in21k
|
14 |
+
model-index:
|
15 |
+
- name: derma-vit-base-finetuned
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# derma-vit-base-finetuned
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.6179
|
27 |
+
- Accuracy: 0.7677
|
28 |
+
- Precision: 0.5889
|
29 |
+
- Recall: 0.4796
|
30 |
+
- F1: 0.5088
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.005
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 4
|
54 |
+
- total_train_batch_size: 64
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 10
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
+
| 0.7579 | 1.0 | 109 | 0.7045 | 0.7428 | 0.5204 | 0.3710 | 0.3927 |
|
65 |
+
| 0.7689 | 2.0 | 219 | 0.7512 | 0.7278 | 0.3964 | 0.3527 | 0.3573 |
|
66 |
+
| 0.7353 | 3.0 | 328 | 0.7191 | 0.7358 | 0.4630 | 0.4202 | 0.4002 |
|
67 |
+
| 0.8429 | 4.0 | 438 | 0.7858 | 0.6810 | 0.4280 | 0.1813 | 0.1851 |
|
68 |
+
| 0.7929 | 5.0 | 547 | 0.7013 | 0.7218 | 0.5158 | 0.3971 | 0.3523 |
|
69 |
+
| 0.6804 | 6.0 | 657 | 0.6822 | 0.7607 | 0.5011 | 0.4240 | 0.4391 |
|
70 |
+
| 0.6922 | 7.0 | 766 | 0.6533 | 0.7667 | 0.6762 | 0.5106 | 0.5227 |
|
71 |
+
| 0.6563 | 8.0 | 876 | 0.6758 | 0.7468 | 0.4548 | 0.4589 | 0.4496 |
|
72 |
+
| 0.6985 | 9.0 | 985 | 0.6264 | 0.7647 | 0.6451 | 0.4692 | 0.4915 |
|
73 |
+
| 0.6283 | 9.95 | 1090 | 0.6179 | 0.7677 | 0.5889 | 0.4796 | 0.5088 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- PEFT 0.9.0
|
79 |
+
- Transformers 4.38.2
|
80 |
+
- Pytorch 2.2.1+cu121
|
81 |
+
- Datasets 2.18.0
|
82 |
+
- Tokenizers 0.15.2
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b73c6612ac90878e926b9b8ff7dfecfc170ecfa55796414eacb149bccb40dccb
|
3 |
size 2387980
|