File size: 2,454 Bytes
2467ab0 fec7f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
# Model Card: MRI Brain Tumor Classification Model
## Model Details
- **Architecture**: EfficientNet-B1-based MRI classification model
- **Dataset**: [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset)
- **Batch Size**: 32
- **Loss Function**: Triplet Margin Loss with Cosine Similarity
- **Optimizer**: Adam (learning rate = 1e-2)
## Model Architecture
This model is based on **EfficientNet-B1** and has been modified for MRI brain tumor classification. The main adaptations include:
### **Modifications**:
- **Input Channel Adjustment**: The first convolutional layer is changed to accept single-channel (grayscale) MRI scans.
- **Classifier Head**: The default classifier is replaced with a custom MLP featuring:
- Fully connected layers with 1280 → 756 → 256 units.
- SiLU activation.
- Batch normalization.
- Dropout for regularization.
### **Triplet Loss for Metric Learning**:
The model uses **Triplet Margin Loss** with **Cosine Similarity** to learn an embedding space where MRI images of the same class are closer together, while images from different classes are farther apart.
## Implementation
### **Model Definition**
```python
import torch
import torch.nn as nn
from torchvision.models import efficientnet_b1
from torch.nn import TripletMarginWithDistanceLoss
from torch.nn.functional import cosine_similarity
class MRIModel(nn.Module, PyTorchModelHubMixin):
def __init__(self):
super(MRIModel, self).__init__()
self.base_model = efficientnet_b1(weights=False)
self.base_model.features[0] = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False),
nn.BatchNorm2d(32),
nn.ReLU6(inplace=True),
)
self.base_model.classifier = nn.Sequential(
nn.Linear(1280, 756),
nn.SiLU(),
nn.BatchNorm1d(756),
nn.Dropout(0.2),
nn.Linear(756, 256),
)
def forward(self, x):
return self.base_model(x)
```
## Training Configuration
- Batch Size: 32
- Loss Function: Triplet Margin Loss (Cosine Similarity)
- Optimizer: Adam (learning rate = 1e-2)
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: |