sdadas commited on
Commit
8426588
·
1 Parent(s): 8d9294a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1152 -0
README.md CHANGED
@@ -5,6 +5,1158 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  language: pl
9
  license: apache-2.0
10
  widget:
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - mteb
9
+ model-index:
10
+ - name: mmlw-e5-small
11
+ results:
12
+ - task:
13
+ type: Clustering
14
+ dataset:
15
+ type: PL-MTEB/8tags-clustering
16
+ name: MTEB 8TagsClustering
17
+ config: default
18
+ split: test
19
+ revision: None
20
+ metrics:
21
+ - type: v_measure
22
+ value: 31.772224277808153
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: PL-MTEB/allegro-reviews
27
+ name: MTEB AllegroReviews
28
+ config: default
29
+ split: test
30
+ revision: None
31
+ metrics:
32
+ - type: accuracy
33
+ value: 33.03180914512922
34
+ - type: f1
35
+ value: 29.800304217426167
36
+ - task:
37
+ type: Retrieval
38
+ dataset:
39
+ type: arguana-pl
40
+ name: MTEB ArguAna-PL
41
+ config: default
42
+ split: test
43
+ revision: None
44
+ metrics:
45
+ - type: map_at_1
46
+ value: 28.804999999999996
47
+ - type: map_at_10
48
+ value: 45.327
49
+ - type: map_at_100
50
+ value: 46.17
51
+ - type: map_at_1000
52
+ value: 46.177
53
+ - type: map_at_3
54
+ value: 40.528999999999996
55
+ - type: map_at_5
56
+ value: 43.335
57
+ - type: mrr_at_1
58
+ value: 30.299
59
+ - type: mrr_at_10
60
+ value: 45.763
61
+ - type: mrr_at_100
62
+ value: 46.641
63
+ - type: mrr_at_1000
64
+ value: 46.648
65
+ - type: mrr_at_3
66
+ value: 41.074
67
+ - type: mrr_at_5
68
+ value: 43.836999999999996
69
+ - type: ndcg_at_1
70
+ value: 28.804999999999996
71
+ - type: ndcg_at_10
72
+ value: 54.308
73
+ - type: ndcg_at_100
74
+ value: 57.879000000000005
75
+ - type: ndcg_at_1000
76
+ value: 58.048
77
+ - type: ndcg_at_3
78
+ value: 44.502
79
+ - type: ndcg_at_5
80
+ value: 49.519000000000005
81
+ - type: precision_at_1
82
+ value: 28.804999999999996
83
+ - type: precision_at_10
84
+ value: 8.286
85
+ - type: precision_at_100
86
+ value: 0.984
87
+ - type: precision_at_1000
88
+ value: 0.1
89
+ - type: precision_at_3
90
+ value: 18.682000000000002
91
+ - type: precision_at_5
92
+ value: 13.627
93
+ - type: recall_at_1
94
+ value: 28.804999999999996
95
+ - type: recall_at_10
96
+ value: 82.85900000000001
97
+ - type: recall_at_100
98
+ value: 98.36399999999999
99
+ - type: recall_at_1000
100
+ value: 99.644
101
+ - type: recall_at_3
102
+ value: 56.04599999999999
103
+ - type: recall_at_5
104
+ value: 68.137
105
+ - task:
106
+ type: Classification
107
+ dataset:
108
+ type: PL-MTEB/cbd
109
+ name: MTEB CBD
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: accuracy
115
+ value: 64.24
116
+ - type: ap
117
+ value: 17.967103105024705
118
+ - type: f1
119
+ value: 52.97375416129459
120
+ - task:
121
+ type: PairClassification
122
+ dataset:
123
+ type: PL-MTEB/cdsce-pairclassification
124
+ name: MTEB CDSC-E
125
+ config: default
126
+ split: test
127
+ revision: None
128
+ metrics:
129
+ - type: cos_sim_accuracy
130
+ value: 88.8
131
+ - type: cos_sim_ap
132
+ value: 76.68028778789487
133
+ - type: cos_sim_f1
134
+ value: 66.82352941176471
135
+ - type: cos_sim_precision
136
+ value: 60.42553191489362
137
+ - type: cos_sim_recall
138
+ value: 74.73684210526315
139
+ - type: dot_accuracy
140
+ value: 88.1
141
+ - type: dot_ap
142
+ value: 72.04910086070551
143
+ - type: dot_f1
144
+ value: 66.66666666666667
145
+ - type: dot_precision
146
+ value: 69.31818181818183
147
+ - type: dot_recall
148
+ value: 64.21052631578948
149
+ - type: euclidean_accuracy
150
+ value: 88.8
151
+ - type: euclidean_ap
152
+ value: 76.63591858340688
153
+ - type: euclidean_f1
154
+ value: 67.13286713286713
155
+ - type: euclidean_precision
156
+ value: 60.25104602510461
157
+ - type: euclidean_recall
158
+ value: 75.78947368421053
159
+ - type: manhattan_accuracy
160
+ value: 88.9
161
+ - type: manhattan_ap
162
+ value: 76.54552849815124
163
+ - type: manhattan_f1
164
+ value: 66.66666666666667
165
+ - type: manhattan_precision
166
+ value: 60.51502145922747
167
+ - type: manhattan_recall
168
+ value: 74.21052631578947
169
+ - type: max_accuracy
170
+ value: 88.9
171
+ - type: max_ap
172
+ value: 76.68028778789487
173
+ - type: max_f1
174
+ value: 67.13286713286713
175
+ - task:
176
+ type: STS
177
+ dataset:
178
+ type: PL-MTEB/cdscr-sts
179
+ name: MTEB CDSC-R
180
+ config: default
181
+ split: test
182
+ revision: None
183
+ metrics:
184
+ - type: cos_sim_pearson
185
+ value: 91.64169404461497
186
+ - type: cos_sim_spearman
187
+ value: 91.9755161377078
188
+ - type: euclidean_pearson
189
+ value: 90.87481478491249
190
+ - type: euclidean_spearman
191
+ value: 91.92362666383987
192
+ - type: manhattan_pearson
193
+ value: 90.8415510499638
194
+ - type: manhattan_spearman
195
+ value: 91.85927127194698
196
+ - task:
197
+ type: Retrieval
198
+ dataset:
199
+ type: dbpedia-pl
200
+ name: MTEB DBPedia-PL
201
+ config: default
202
+ split: test
203
+ revision: None
204
+ metrics:
205
+ - type: map_at_1
206
+ value: 6.148
207
+ - type: map_at_10
208
+ value: 12.870999999999999
209
+ - type: map_at_100
210
+ value: 18.04
211
+ - type: map_at_1000
212
+ value: 19.286
213
+ - type: map_at_3
214
+ value: 9.156
215
+ - type: map_at_5
216
+ value: 10.857999999999999
217
+ - type: mrr_at_1
218
+ value: 53.25
219
+ - type: mrr_at_10
220
+ value: 61.016999999999996
221
+ - type: mrr_at_100
222
+ value: 61.48400000000001
223
+ - type: mrr_at_1000
224
+ value: 61.507999999999996
225
+ - type: mrr_at_3
226
+ value: 58.75
227
+ - type: mrr_at_5
228
+ value: 60.375
229
+ - type: ndcg_at_1
230
+ value: 41.0
231
+ - type: ndcg_at_10
232
+ value: 30.281000000000002
233
+ - type: ndcg_at_100
234
+ value: 33.955999999999996
235
+ - type: ndcg_at_1000
236
+ value: 40.77
237
+ - type: ndcg_at_3
238
+ value: 34.127
239
+ - type: ndcg_at_5
240
+ value: 32.274
241
+ - type: precision_at_1
242
+ value: 52.5
243
+ - type: precision_at_10
244
+ value: 24.525
245
+ - type: precision_at_100
246
+ value: 8.125
247
+ - type: precision_at_1000
248
+ value: 1.728
249
+ - type: precision_at_3
250
+ value: 37.083
251
+ - type: precision_at_5
252
+ value: 32.15
253
+ - type: recall_at_1
254
+ value: 6.148
255
+ - type: recall_at_10
256
+ value: 17.866
257
+ - type: recall_at_100
258
+ value: 39.213
259
+ - type: recall_at_1000
260
+ value: 61.604000000000006
261
+ - type: recall_at_3
262
+ value: 10.084
263
+ - type: recall_at_5
264
+ value: 13.333999999999998
265
+ - task:
266
+ type: Retrieval
267
+ dataset:
268
+ type: fiqa-pl
269
+ name: MTEB FiQA-PL
270
+ config: default
271
+ split: test
272
+ revision: None
273
+ metrics:
274
+ - type: map_at_1
275
+ value: 14.643
276
+ - type: map_at_10
277
+ value: 23.166
278
+ - type: map_at_100
279
+ value: 24.725
280
+ - type: map_at_1000
281
+ value: 24.92
282
+ - type: map_at_3
283
+ value: 20.166
284
+ - type: map_at_5
285
+ value: 22.003
286
+ - type: mrr_at_1
287
+ value: 29.630000000000003
288
+ - type: mrr_at_10
289
+ value: 37.632
290
+ - type: mrr_at_100
291
+ value: 38.512
292
+ - type: mrr_at_1000
293
+ value: 38.578
294
+ - type: mrr_at_3
295
+ value: 35.391
296
+ - type: mrr_at_5
297
+ value: 36.857
298
+ - type: ndcg_at_1
299
+ value: 29.166999999999998
300
+ - type: ndcg_at_10
301
+ value: 29.749
302
+ - type: ndcg_at_100
303
+ value: 35.983
304
+ - type: ndcg_at_1000
305
+ value: 39.817
306
+ - type: ndcg_at_3
307
+ value: 26.739
308
+ - type: ndcg_at_5
309
+ value: 27.993000000000002
310
+ - type: precision_at_1
311
+ value: 29.166999999999998
312
+ - type: precision_at_10
313
+ value: 8.333
314
+ - type: precision_at_100
315
+ value: 1.448
316
+ - type: precision_at_1000
317
+ value: 0.213
318
+ - type: precision_at_3
319
+ value: 17.747
320
+ - type: precision_at_5
321
+ value: 13.58
322
+ - type: recall_at_1
323
+ value: 14.643
324
+ - type: recall_at_10
325
+ value: 35.247
326
+ - type: recall_at_100
327
+ value: 59.150999999999996
328
+ - type: recall_at_1000
329
+ value: 82.565
330
+ - type: recall_at_3
331
+ value: 24.006
332
+ - type: recall_at_5
333
+ value: 29.383
334
+ - task:
335
+ type: Retrieval
336
+ dataset:
337
+ type: hotpotqa-pl
338
+ name: MTEB HotpotQA-PL
339
+ config: default
340
+ split: test
341
+ revision: None
342
+ metrics:
343
+ - type: map_at_1
344
+ value: 32.627
345
+ - type: map_at_10
346
+ value: 48.041
347
+ - type: map_at_100
348
+ value: 49.008
349
+ - type: map_at_1000
350
+ value: 49.092999999999996
351
+ - type: map_at_3
352
+ value: 44.774
353
+ - type: map_at_5
354
+ value: 46.791
355
+ - type: mrr_at_1
356
+ value: 65.28
357
+ - type: mrr_at_10
358
+ value: 72.53500000000001
359
+ - type: mrr_at_100
360
+ value: 72.892
361
+ - type: mrr_at_1000
362
+ value: 72.909
363
+ - type: mrr_at_3
364
+ value: 71.083
365
+ - type: mrr_at_5
366
+ value: 71.985
367
+ - type: ndcg_at_1
368
+ value: 65.253
369
+ - type: ndcg_at_10
370
+ value: 57.13700000000001
371
+ - type: ndcg_at_100
372
+ value: 60.783
373
+ - type: ndcg_at_1000
374
+ value: 62.507000000000005
375
+ - type: ndcg_at_3
376
+ value: 52.17
377
+ - type: ndcg_at_5
378
+ value: 54.896
379
+ - type: precision_at_1
380
+ value: 65.253
381
+ - type: precision_at_10
382
+ value: 12.088000000000001
383
+ - type: precision_at_100
384
+ value: 1.496
385
+ - type: precision_at_1000
386
+ value: 0.172
387
+ - type: precision_at_3
388
+ value: 32.96
389
+ - type: precision_at_5
390
+ value: 21.931
391
+ - type: recall_at_1
392
+ value: 32.627
393
+ - type: recall_at_10
394
+ value: 60.439
395
+ - type: recall_at_100
396
+ value: 74.80799999999999
397
+ - type: recall_at_1000
398
+ value: 86.219
399
+ - type: recall_at_3
400
+ value: 49.44
401
+ - type: recall_at_5
402
+ value: 54.827999999999996
403
+ - task:
404
+ type: Retrieval
405
+ dataset:
406
+ type: msmarco-pl
407
+ name: MTEB MSMARCO-PL
408
+ config: default
409
+ split: validation
410
+ revision: None
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 13.150999999999998
414
+ - type: map_at_10
415
+ value: 21.179000000000002
416
+ - type: map_at_100
417
+ value: 22.227
418
+ - type: map_at_1000
419
+ value: 22.308
420
+ - type: map_at_3
421
+ value: 18.473
422
+ - type: map_at_5
423
+ value: 19.942999999999998
424
+ - type: mrr_at_1
425
+ value: 13.467
426
+ - type: mrr_at_10
427
+ value: 21.471
428
+ - type: mrr_at_100
429
+ value: 22.509
430
+ - type: mrr_at_1000
431
+ value: 22.585
432
+ - type: mrr_at_3
433
+ value: 18.789
434
+ - type: mrr_at_5
435
+ value: 20.262
436
+ - type: ndcg_at_1
437
+ value: 13.539000000000001
438
+ - type: ndcg_at_10
439
+ value: 25.942999999999998
440
+ - type: ndcg_at_100
441
+ value: 31.386999999999997
442
+ - type: ndcg_at_1000
443
+ value: 33.641
444
+ - type: ndcg_at_3
445
+ value: 20.368
446
+ - type: ndcg_at_5
447
+ value: 23.003999999999998
448
+ - type: precision_at_1
449
+ value: 13.539000000000001
450
+ - type: precision_at_10
451
+ value: 4.249
452
+ - type: precision_at_100
453
+ value: 0.7040000000000001
454
+ - type: precision_at_1000
455
+ value: 0.09
456
+ - type: precision_at_3
457
+ value: 8.782
458
+ - type: precision_at_5
459
+ value: 6.6049999999999995
460
+ - type: recall_at_1
461
+ value: 13.150999999999998
462
+ - type: recall_at_10
463
+ value: 40.698
464
+ - type: recall_at_100
465
+ value: 66.71000000000001
466
+ - type: recall_at_1000
467
+ value: 84.491
468
+ - type: recall_at_3
469
+ value: 25.452
470
+ - type: recall_at_5
471
+ value: 31.791000000000004
472
+ - task:
473
+ type: Classification
474
+ dataset:
475
+ type: mteb/amazon_massive_intent
476
+ name: MTEB MassiveIntentClassification (pl)
477
+ config: pl
478
+ split: test
479
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
480
+ metrics:
481
+ - type: accuracy
482
+ value: 67.3537323470074
483
+ - type: f1
484
+ value: 64.67852047603644
485
+ - task:
486
+ type: Classification
487
+ dataset:
488
+ type: mteb/amazon_massive_scenario
489
+ name: MTEB MassiveScenarioClassification (pl)
490
+ config: pl
491
+ split: test
492
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
493
+ metrics:
494
+ - type: accuracy
495
+ value: 72.12508406186953
496
+ - type: f1
497
+ value: 71.55887309568853
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: nfcorpus-pl
502
+ name: MTEB NFCorpus-PL
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 4.18
509
+ - type: map_at_10
510
+ value: 9.524000000000001
511
+ - type: map_at_100
512
+ value: 12.272
513
+ - type: map_at_1000
514
+ value: 13.616
515
+ - type: map_at_3
516
+ value: 6.717
517
+ - type: map_at_5
518
+ value: 8.172
519
+ - type: mrr_at_1
520
+ value: 37.152
521
+ - type: mrr_at_10
522
+ value: 45.068000000000005
523
+ - type: mrr_at_100
524
+ value: 46.026
525
+ - type: mrr_at_1000
526
+ value: 46.085
527
+ - type: mrr_at_3
528
+ value: 43.344
529
+ - type: mrr_at_5
530
+ value: 44.412
531
+ - type: ndcg_at_1
532
+ value: 34.52
533
+ - type: ndcg_at_10
534
+ value: 27.604
535
+ - type: ndcg_at_100
536
+ value: 26.012999999999998
537
+ - type: ndcg_at_1000
538
+ value: 35.272
539
+ - type: ndcg_at_3
540
+ value: 31.538
541
+ - type: ndcg_at_5
542
+ value: 30.165999999999997
543
+ - type: precision_at_1
544
+ value: 36.223
545
+ - type: precision_at_10
546
+ value: 21.053
547
+ - type: precision_at_100
548
+ value: 7.08
549
+ - type: precision_at_1000
550
+ value: 1.9929999999999999
551
+ - type: precision_at_3
552
+ value: 30.031000000000002
553
+ - type: precision_at_5
554
+ value: 26.997
555
+ - type: recall_at_1
556
+ value: 4.18
557
+ - type: recall_at_10
558
+ value: 12.901000000000002
559
+ - type: recall_at_100
560
+ value: 27.438000000000002
561
+ - type: recall_at_1000
562
+ value: 60.768
563
+ - type: recall_at_3
564
+ value: 7.492
565
+ - type: recall_at_5
566
+ value: 10.05
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: nq-pl
571
+ name: MTEB NQ-PL
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 17.965
578
+ - type: map_at_10
579
+ value: 28.04
580
+ - type: map_at_100
581
+ value: 29.217
582
+ - type: map_at_1000
583
+ value: 29.285
584
+ - type: map_at_3
585
+ value: 24.818
586
+ - type: map_at_5
587
+ value: 26.617
588
+ - type: mrr_at_1
589
+ value: 20.22
590
+ - type: mrr_at_10
591
+ value: 30.148000000000003
592
+ - type: mrr_at_100
593
+ value: 31.137999999999998
594
+ - type: mrr_at_1000
595
+ value: 31.19
596
+ - type: mrr_at_3
597
+ value: 27.201999999999998
598
+ - type: mrr_at_5
599
+ value: 28.884999999999998
600
+ - type: ndcg_at_1
601
+ value: 20.365
602
+ - type: ndcg_at_10
603
+ value: 33.832
604
+ - type: ndcg_at_100
605
+ value: 39.33
606
+ - type: ndcg_at_1000
607
+ value: 41.099999999999994
608
+ - type: ndcg_at_3
609
+ value: 27.46
610
+ - type: ndcg_at_5
611
+ value: 30.584
612
+ - type: precision_at_1
613
+ value: 20.365
614
+ - type: precision_at_10
615
+ value: 5.849
616
+ - type: precision_at_100
617
+ value: 0.8959999999999999
618
+ - type: precision_at_1000
619
+ value: 0.107
620
+ - type: precision_at_3
621
+ value: 12.64
622
+ - type: precision_at_5
623
+ value: 9.334000000000001
624
+ - type: recall_at_1
625
+ value: 17.965
626
+ - type: recall_at_10
627
+ value: 49.503
628
+ - type: recall_at_100
629
+ value: 74.351
630
+ - type: recall_at_1000
631
+ value: 87.766
632
+ - type: recall_at_3
633
+ value: 32.665
634
+ - type: recall_at_5
635
+ value: 39.974
636
+ - task:
637
+ type: Classification
638
+ dataset:
639
+ type: laugustyniak/abusive-clauses-pl
640
+ name: MTEB PAC
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: accuracy
646
+ value: 63.11323486823051
647
+ - type: ap
648
+ value: 74.53486257377787
649
+ - type: f1
650
+ value: 60.631005373417736
651
+ - task:
652
+ type: PairClassification
653
+ dataset:
654
+ type: PL-MTEB/ppc-pairclassification
655
+ name: MTEB PPC
656
+ config: default
657
+ split: test
658
+ revision: None
659
+ metrics:
660
+ - type: cos_sim_accuracy
661
+ value: 80.10000000000001
662
+ - type: cos_sim_ap
663
+ value: 89.69526236458292
664
+ - type: cos_sim_f1
665
+ value: 83.37468982630274
666
+ - type: cos_sim_precision
667
+ value: 83.30578512396694
668
+ - type: cos_sim_recall
669
+ value: 83.44370860927152
670
+ - type: dot_accuracy
671
+ value: 77.8
672
+ - type: dot_ap
673
+ value: 87.72366051496104
674
+ - type: dot_f1
675
+ value: 82.83752860411899
676
+ - type: dot_precision
677
+ value: 76.80339462517681
678
+ - type: dot_recall
679
+ value: 89.90066225165563
680
+ - type: euclidean_accuracy
681
+ value: 80.10000000000001
682
+ - type: euclidean_ap
683
+ value: 89.61317191870039
684
+ - type: euclidean_f1
685
+ value: 83.40214698596202
686
+ - type: euclidean_precision
687
+ value: 83.19604612850083
688
+ - type: euclidean_recall
689
+ value: 83.6092715231788
690
+ - type: manhattan_accuracy
691
+ value: 79.60000000000001
692
+ - type: manhattan_ap
693
+ value: 89.48363786968471
694
+ - type: manhattan_f1
695
+ value: 82.96296296296296
696
+ - type: manhattan_precision
697
+ value: 82.48772504091653
698
+ - type: manhattan_recall
699
+ value: 83.44370860927152
700
+ - type: max_accuracy
701
+ value: 80.10000000000001
702
+ - type: max_ap
703
+ value: 89.69526236458292
704
+ - type: max_f1
705
+ value: 83.40214698596202
706
+ - task:
707
+ type: PairClassification
708
+ dataset:
709
+ type: PL-MTEB/psc-pairclassification
710
+ name: MTEB PSC
711
+ config: default
712
+ split: test
713
+ revision: None
714
+ metrics:
715
+ - type: cos_sim_accuracy
716
+ value: 96.93877551020408
717
+ - type: cos_sim_ap
718
+ value: 98.86489482248999
719
+ - type: cos_sim_f1
720
+ value: 95.11111111111113
721
+ - type: cos_sim_precision
722
+ value: 92.507204610951
723
+ - type: cos_sim_recall
724
+ value: 97.86585365853658
725
+ - type: dot_accuracy
726
+ value: 95.73283858998145
727
+ - type: dot_ap
728
+ value: 97.8261652492545
729
+ - type: dot_f1
730
+ value: 93.21533923303835
731
+ - type: dot_precision
732
+ value: 90.28571428571428
733
+ - type: dot_recall
734
+ value: 96.34146341463415
735
+ - type: euclidean_accuracy
736
+ value: 96.93877551020408
737
+ - type: euclidean_ap
738
+ value: 98.84837797066623
739
+ - type: euclidean_f1
740
+ value: 95.11111111111113
741
+ - type: euclidean_precision
742
+ value: 92.507204610951
743
+ - type: euclidean_recall
744
+ value: 97.86585365853658
745
+ - type: manhattan_accuracy
746
+ value: 96.84601113172542
747
+ - type: manhattan_ap
748
+ value: 98.78659090944161
749
+ - type: manhattan_f1
750
+ value: 94.9404761904762
751
+ - type: manhattan_precision
752
+ value: 92.73255813953489
753
+ - type: manhattan_recall
754
+ value: 97.2560975609756
755
+ - type: max_accuracy
756
+ value: 96.93877551020408
757
+ - type: max_ap
758
+ value: 98.86489482248999
759
+ - type: max_f1
760
+ value: 95.11111111111113
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ type: PL-MTEB/polemo2_in
765
+ name: MTEB PolEmo2.0-IN
766
+ config: default
767
+ split: test
768
+ revision: None
769
+ metrics:
770
+ - type: accuracy
771
+ value: 63.961218836565095
772
+ - type: f1
773
+ value: 64.3979989243291
774
+ - task:
775
+ type: Classification
776
+ dataset:
777
+ type: PL-MTEB/polemo2_out
778
+ name: MTEB PolEmo2.0-OUT
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: accuracy
784
+ value: 40.32388663967612
785
+ - type: f1
786
+ value: 32.339117999015755
787
+ - task:
788
+ type: Retrieval
789
+ dataset:
790
+ type: quora-pl
791
+ name: MTEB Quora-PL
792
+ config: default
793
+ split: test
794
+ revision: None
795
+ metrics:
796
+ - type: map_at_1
797
+ value: 62.757
798
+ - type: map_at_10
799
+ value: 76.55999999999999
800
+ - type: map_at_100
801
+ value: 77.328
802
+ - type: map_at_1000
803
+ value: 77.35499999999999
804
+ - type: map_at_3
805
+ value: 73.288
806
+ - type: map_at_5
807
+ value: 75.25500000000001
808
+ - type: mrr_at_1
809
+ value: 72.28
810
+ - type: mrr_at_10
811
+ value: 79.879
812
+ - type: mrr_at_100
813
+ value: 80.121
814
+ - type: mrr_at_1000
815
+ value: 80.12700000000001
816
+ - type: mrr_at_3
817
+ value: 78.40700000000001
818
+ - type: mrr_at_5
819
+ value: 79.357
820
+ - type: ndcg_at_1
821
+ value: 72.33000000000001
822
+ - type: ndcg_at_10
823
+ value: 81.151
824
+ - type: ndcg_at_100
825
+ value: 83.107
826
+ - type: ndcg_at_1000
827
+ value: 83.397
828
+ - type: ndcg_at_3
829
+ value: 77.3
830
+ - type: ndcg_at_5
831
+ value: 79.307
832
+ - type: precision_at_1
833
+ value: 72.33000000000001
834
+ - type: precision_at_10
835
+ value: 12.587000000000002
836
+ - type: precision_at_100
837
+ value: 1.488
838
+ - type: precision_at_1000
839
+ value: 0.155
840
+ - type: precision_at_3
841
+ value: 33.943
842
+ - type: precision_at_5
843
+ value: 22.61
844
+ - type: recall_at_1
845
+ value: 62.757
846
+ - type: recall_at_10
847
+ value: 90.616
848
+ - type: recall_at_100
849
+ value: 97.905
850
+ - type: recall_at_1000
851
+ value: 99.618
852
+ - type: recall_at_3
853
+ value: 79.928
854
+ - type: recall_at_5
855
+ value: 85.30499999999999
856
+ - task:
857
+ type: Retrieval
858
+ dataset:
859
+ type: scidocs-pl
860
+ name: MTEB SCIDOCS-PL
861
+ config: default
862
+ split: test
863
+ revision: None
864
+ metrics:
865
+ - type: map_at_1
866
+ value: 3.313
867
+ - type: map_at_10
868
+ value: 8.559999999999999
869
+ - type: map_at_100
870
+ value: 10.177999999999999
871
+ - type: map_at_1000
872
+ value: 10.459999999999999
873
+ - type: map_at_3
874
+ value: 6.094
875
+ - type: map_at_5
876
+ value: 7.323
877
+ - type: mrr_at_1
878
+ value: 16.3
879
+ - type: mrr_at_10
880
+ value: 25.579
881
+ - type: mrr_at_100
882
+ value: 26.717000000000002
883
+ - type: mrr_at_1000
884
+ value: 26.799
885
+ - type: mrr_at_3
886
+ value: 22.583000000000002
887
+ - type: mrr_at_5
888
+ value: 24.298000000000002
889
+ - type: ndcg_at_1
890
+ value: 16.3
891
+ - type: ndcg_at_10
892
+ value: 14.789
893
+ - type: ndcg_at_100
894
+ value: 21.731
895
+ - type: ndcg_at_1000
896
+ value: 27.261999999999997
897
+ - type: ndcg_at_3
898
+ value: 13.74
899
+ - type: ndcg_at_5
900
+ value: 12.199
901
+ - type: precision_at_1
902
+ value: 16.3
903
+ - type: precision_at_10
904
+ value: 7.779999999999999
905
+ - type: precision_at_100
906
+ value: 1.79
907
+ - type: precision_at_1000
908
+ value: 0.313
909
+ - type: precision_at_3
910
+ value: 12.933
911
+ - type: precision_at_5
912
+ value: 10.86
913
+ - type: recall_at_1
914
+ value: 3.313
915
+ - type: recall_at_10
916
+ value: 15.772
917
+ - type: recall_at_100
918
+ value: 36.392
919
+ - type: recall_at_1000
920
+ value: 63.525
921
+ - type: recall_at_3
922
+ value: 7.863
923
+ - type: recall_at_5
924
+ value: 11.003
925
+ - task:
926
+ type: PairClassification
927
+ dataset:
928
+ type: PL-MTEB/sicke-pl-pairclassification
929
+ name: MTEB SICK-E-PL
930
+ config: default
931
+ split: test
932
+ revision: None
933
+ metrics:
934
+ - type: cos_sim_accuracy
935
+ value: 81.7977986139421
936
+ - type: cos_sim_ap
937
+ value: 73.21294750778902
938
+ - type: cos_sim_f1
939
+ value: 66.57391304347826
940
+ - type: cos_sim_precision
941
+ value: 65.05778382053025
942
+ - type: cos_sim_recall
943
+ value: 68.16239316239316
944
+ - type: dot_accuracy
945
+ value: 78.67916836526702
946
+ - type: dot_ap
947
+ value: 63.61943815978181
948
+ - type: dot_f1
949
+ value: 62.45014245014245
950
+ - type: dot_precision
951
+ value: 52.04178537511871
952
+ - type: dot_recall
953
+ value: 78.06267806267806
954
+ - type: euclidean_accuracy
955
+ value: 81.7774154097024
956
+ - type: euclidean_ap
957
+ value: 73.25053778387148
958
+ - type: euclidean_f1
959
+ value: 66.55064392620953
960
+ - type: euclidean_precision
961
+ value: 65.0782845473111
962
+ - type: euclidean_recall
963
+ value: 68.09116809116809
964
+ - type: manhattan_accuracy
965
+ value: 81.63473298002447
966
+ - type: manhattan_ap
967
+ value: 72.99781945530033
968
+ - type: manhattan_f1
969
+ value: 66.3623595505618
970
+ - type: manhattan_precision
971
+ value: 65.4432132963989
972
+ - type: manhattan_recall
973
+ value: 67.3076923076923
974
+ - type: max_accuracy
975
+ value: 81.7977986139421
976
+ - type: max_ap
977
+ value: 73.25053778387148
978
+ - type: max_f1
979
+ value: 66.57391304347826
980
+ - task:
981
+ type: STS
982
+ dataset:
983
+ type: PL-MTEB/sickr-pl-sts
984
+ name: MTEB SICK-R-PL
985
+ config: default
986
+ split: test
987
+ revision: None
988
+ metrics:
989
+ - type: cos_sim_pearson
990
+ value: 79.62332929388755
991
+ - type: cos_sim_spearman
992
+ value: 73.70598290849304
993
+ - type: euclidean_pearson
994
+ value: 77.3603286710006
995
+ - type: euclidean_spearman
996
+ value: 73.74420279933932
997
+ - type: manhattan_pearson
998
+ value: 77.12735032552482
999
+ - type: manhattan_spearman
1000
+ value: 73.53014836690127
1001
+ - task:
1002
+ type: STS
1003
+ dataset:
1004
+ type: mteb/sts22-crosslingual-sts
1005
+ name: MTEB STS22 (pl)
1006
+ config: pl
1007
+ split: test
1008
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1009
+ metrics:
1010
+ - type: cos_sim_pearson
1011
+ value: 37.696942928686724
1012
+ - type: cos_sim_spearman
1013
+ value: 40.6271445245692
1014
+ - type: euclidean_pearson
1015
+ value: 30.212734461370832
1016
+ - type: euclidean_spearman
1017
+ value: 40.66643376699638
1018
+ - type: manhattan_pearson
1019
+ value: 29.90223716230108
1020
+ - type: manhattan_spearman
1021
+ value: 40.35576319091178
1022
+ - task:
1023
+ type: Retrieval
1024
+ dataset:
1025
+ type: scifact-pl
1026
+ name: MTEB SciFact-PL
1027
+ config: default
1028
+ split: test
1029
+ revision: None
1030
+ metrics:
1031
+ - type: map_at_1
1032
+ value: 43.528
1033
+ - type: map_at_10
1034
+ value: 53.290000000000006
1035
+ - type: map_at_100
1036
+ value: 54.342
1037
+ - type: map_at_1000
1038
+ value: 54.376999999999995
1039
+ - type: map_at_3
1040
+ value: 50.651999999999994
1041
+ - type: map_at_5
1042
+ value: 52.248000000000005
1043
+ - type: mrr_at_1
1044
+ value: 46.666999999999994
1045
+ - type: mrr_at_10
1046
+ value: 55.286
1047
+ - type: mrr_at_100
1048
+ value: 56.094
1049
+ - type: mrr_at_1000
1050
+ value: 56.125
1051
+ - type: mrr_at_3
1052
+ value: 53.222
1053
+ - type: mrr_at_5
1054
+ value: 54.339000000000006
1055
+ - type: ndcg_at_1
1056
+ value: 46.0
1057
+ - type: ndcg_at_10
1058
+ value: 58.142
1059
+ - type: ndcg_at_100
1060
+ value: 62.426
1061
+ - type: ndcg_at_1000
1062
+ value: 63.395999999999994
1063
+ - type: ndcg_at_3
1064
+ value: 53.53
1065
+ - type: ndcg_at_5
1066
+ value: 55.842000000000006
1067
+ - type: precision_at_1
1068
+ value: 46.0
1069
+ - type: precision_at_10
1070
+ value: 7.9670000000000005
1071
+ - type: precision_at_100
1072
+ value: 1.023
1073
+ - type: precision_at_1000
1074
+ value: 0.11100000000000002
1075
+ - type: precision_at_3
1076
+ value: 21.444
1077
+ - type: precision_at_5
1078
+ value: 14.333000000000002
1079
+ - type: recall_at_1
1080
+ value: 43.528
1081
+ - type: recall_at_10
1082
+ value: 71.511
1083
+ - type: recall_at_100
1084
+ value: 89.93299999999999
1085
+ - type: recall_at_1000
1086
+ value: 97.667
1087
+ - type: recall_at_3
1088
+ value: 59.067
1089
+ - type: recall_at_5
1090
+ value: 64.789
1091
+ - task:
1092
+ type: Retrieval
1093
+ dataset:
1094
+ type: trec-covid-pl
1095
+ name: MTEB TRECCOVID-PL
1096
+ config: default
1097
+ split: test
1098
+ revision: None
1099
+ metrics:
1100
+ - type: map_at_1
1101
+ value: 0.22699999999999998
1102
+ - type: map_at_10
1103
+ value: 1.3379999999999999
1104
+ - type: map_at_100
1105
+ value: 6.965000000000001
1106
+ - type: map_at_1000
1107
+ value: 17.135
1108
+ - type: map_at_3
1109
+ value: 0.53
1110
+ - type: map_at_5
1111
+ value: 0.799
1112
+ - type: mrr_at_1
1113
+ value: 84.0
1114
+ - type: mrr_at_10
1115
+ value: 88.083
1116
+ - type: mrr_at_100
1117
+ value: 88.432
1118
+ - type: mrr_at_1000
1119
+ value: 88.432
1120
+ - type: mrr_at_3
1121
+ value: 87.333
1122
+ - type: mrr_at_5
1123
+ value: 87.833
1124
+ - type: ndcg_at_1
1125
+ value: 76.0
1126
+ - type: ndcg_at_10
1127
+ value: 58.199
1128
+ - type: ndcg_at_100
1129
+ value: 43.230000000000004
1130
+ - type: ndcg_at_1000
1131
+ value: 39.751
1132
+ - type: ndcg_at_3
1133
+ value: 63.743
1134
+ - type: ndcg_at_5
1135
+ value: 60.42999999999999
1136
+ - type: precision_at_1
1137
+ value: 84.0
1138
+ - type: precision_at_10
1139
+ value: 62.0
1140
+ - type: precision_at_100
1141
+ value: 44.519999999999996
1142
+ - type: precision_at_1000
1143
+ value: 17.746000000000002
1144
+ - type: precision_at_3
1145
+ value: 67.333
1146
+ - type: precision_at_5
1147
+ value: 63.2
1148
+ - type: recall_at_1
1149
+ value: 0.22699999999999998
1150
+ - type: recall_at_10
1151
+ value: 1.627
1152
+ - type: recall_at_100
1153
+ value: 10.600999999999999
1154
+ - type: recall_at_1000
1155
+ value: 37.532
1156
+ - type: recall_at_3
1157
+ value: 0.547
1158
+ - type: recall_at_5
1159
+ value: 0.864
1160
  language: pl
1161
  license: apache-2.0
1162
  widget: