martinkim0 commited on
Commit
b6a7688
·
verified ·
1 Parent(s): 722805d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +30 -128
README.md CHANGED
@@ -12,99 +12,15 @@ tags:
12
  - annotated:False
13
  ---
14
 
15
-
16
- ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
17
- latent space, integrate technical batches and impute dropouts.
18
- The learned low-dimensional latent representation of the data can be used for visualization and
19
- clustering.
20
-
21
- scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
22
- We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
23
-
24
- - See our original manuscript for further details of the model:
25
- [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
26
- - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
27
- to leverage pre-trained models.
28
-
29
- This model can be used for fine tuning on new data using our Arches framework:
30
- [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
31
-
32
-
33
- # Model Description
34
 
35
  scVI model trained on synthetic IID data and uploaded with the full training data.
36
 
37
- # Metrics
38
-
39
- We provide here key performance metrics for the uploaded model, if provided by the data uploader.
40
-
41
- <details>
42
- <summary><strong>Coefficient of variation</strong></summary>
43
-
44
- The cell-wise coefficient of variation summarizes how well variation between different cells is
45
- preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
46
- , we would recommend not to use generated data for downstream analysis, while the generated latent
47
- space might still be useful for analysis.
48
-
49
- **Cell-wise Coefficient of Variation**:
50
-
51
- | Metric | Training Value | Validation Value |
52
- |-------------------------|----------------|------------------|
53
- | Mean Absolute Error | 0.99 | 1.03 |
54
- | Pearson Correlation | -0.07 | -0.20 |
55
- | Spearman Correlation | -0.07 | -0.03 |
56
- | R² (R-Squared) | -14.43 | -12.71 |
57
-
58
- The gene-wise coefficient of variation summarizes how well variation between different genes is
59
- preserved by the generated model expression. This value is usually quite high.
60
-
61
- **Gene-wise Coefficient of Variation**:
62
-
63
- | Metric | Training Value |
64
- |-------------------------|----------------|
65
- | Mean Absolute Error | 1.07 |
66
- | Pearson Correlation | -0.12 |
67
- | Spearman Correlation | -0.00 |
68
- | R² (R-Squared) | -2.15 |
69
-
70
- </details>
71
 
72
- <details>
73
- <summary><strong>Differential expression metric</strong></summary>
74
 
75
- The differential expression metric provides a summary of the differential expression analysis
76
- between cell types or input clusters. We provide here the F1-score, Pearson Correlation
77
- Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
78
- Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
79
- cell-type.
80
-
81
- **Differential expression**:
82
-
83
- | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
84
- | --- | --- | --- | --- | --- | --- | --- | --- |
85
- | 0 | 0.00 | 0.90 | 0.06 | 0.05 | 0.47 | 0.34 | 50.00 |
86
- | 1 | 0.00 | 0.94 | -0.10 | -0.10 | 0.34 | 0.16 | 48.00 |
87
- | 2 | 0.10 | 0.94 | -0.02 | -0.03 | 0.53 | 0.37 | 41.00 |
88
- | 3 | 0.20 | 0.82 | 0.17 | 0.15 | 0.56 | 0.36 | 39.00 |
89
- | 4 | 0.00 | 0.99 | 0.03 | -0.02 | 0.34 | 0.16 | 37.00 |
90
- | 5 | 0.40 | 0.95 | 0.07 | 0.04 | 0.64 | 0.36 | 37.00 |
91
- | 6 | 0.20 | 1.04 | -0.14 | -0.15 | 0.48 | 0.23 | 32.00 |
92
- | 7 | 0.30 | 1.01 | 0.14 | 0.13 | 0.52 | 0.19 | 31.00 |
93
- | 8 | 0.10 | 0.99 | 0.04 | 0.07 | 0.54 | 0.23 | 28.00 |
94
- | 9 | 0.10 | 1.09 | 0.05 | 0.04 | 0.45 | 0.28 | 26.00 |
95
- | 10 | 0.10 | 1.21 | 0.09 | 0.10 | 0.54 | 0.24 | 19.00 |
96
- | 11 | 0.00 | 1.97 | -0.01 | -0.08 | 0.53 | 0.32 | 12.00 |
97
-
98
- </details>
99
-
100
- # Model Properties
101
-
102
- We provide here key parameters used to setup and train the model.
103
-
104
- <details>
105
- <summary><strong>Model Parameters</strong></summary>
106
-
107
- These provide the settings to setup the original model:
108
  ```json
109
  {
110
  "n_hidden": 128,
@@ -117,12 +33,7 @@ These provide the settings to setup the original model:
117
  }
118
  ```
119
 
120
- </details>
121
-
122
- <details>
123
- <summary><strong>Setup Data Arguments</strong></summary>
124
-
125
- Arguments passed to setup_anndata of the original model:
126
  ```json
127
  {
128
  "layer": null,
@@ -134,53 +45,44 @@ Arguments passed to setup_anndata of the original model:
134
  }
135
  ```
136
 
137
- </details>
138
-
139
- <details>
140
- <summary><strong>Data Registry</strong></summary>
141
-
142
- Registry elements for AnnData manager:
143
- | Registry Key | scvi-tools Location |
144
- |--------------------------|--------------------------------------|
145
- | X | adata.X |
146
- | batch | adata.obs['_scvi_batch'] |
147
- | labels | adata.obs['_scvi_labels'] |
148
-
149
- - **Data is Minified**: False
150
-
151
- </details>
152
 
153
- <details>
154
- <summary><strong>Summary Statistics</strong></summary>
 
 
 
 
155
 
156
- | Summary Stat Key | Value |
157
- |--------------------------|-------|
158
- | n_batch | 1 |
159
- | n_cells | 400 |
160
- | n_extra_categorical_covs | 0 |
161
- | n_extra_continuous_covs | 0 |
162
- | n_labels | 1 |
163
- | n_vars | 100 |
164
 
165
- </details>
166
 
 
167
 
168
- <details>
169
- <summary><strong>Training</strong></summary>
170
 
171
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
172
  sure to provide this field if you want users to be able to access your training data. See the
173
  scvi-tools documentation for details. -->
174
- **Training data url**: Not provided by uploader
175
 
176
- If provided by the original uploader, for those interested in understanding or replicating the
177
- training process, the code is available at the link below.
178
 
179
- **Training Code URL**: Not provided by uploader
180
 
181
- </details>
182
 
 
183
 
184
  # References
185
 
186
- To be added...
 
12
  - annotated:False
13
  ---
14
 
15
+ # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  scVI model trained on synthetic IID data and uploaded with the full training data.
18
 
19
+ # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ Many model properties are in the model tags. Some more are listed below.
 
22
 
23
+ **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ```json
25
  {
26
  "n_hidden": 128,
 
33
  }
34
  ```
35
 
36
+ **model_setup_anndata_args**:
 
 
 
 
 
37
  ```json
38
  {
39
  "layer": null,
 
45
  }
46
  ```
47
 
48
+ **model_summary_stats**:
49
+ | Summary Stat Key | Value |
50
+ |--------------------------|-------|
51
+ | n_batch | 1 |
52
+ | n_cells | 400 |
53
+ | n_extra_categorical_covs | 0 |
54
+ | n_extra_continuous_covs | 0 |
55
+ | n_labels | 1 |
56
+ | n_vars | 100 |
 
 
 
 
 
 
57
 
58
+ **model_data_registry**:
59
+ | Registry Key | scvi-tools Location |
60
+ |--------------|---------------------------|
61
+ | X | adata.X |
62
+ | batch | adata.obs['_scvi_batch'] |
63
+ | labels | adata.obs['_scvi_labels'] |
64
 
65
+ **model_parent_module**: scvi.model
 
 
 
 
 
 
 
66
 
67
+ **data_is_minified**: False
68
 
69
+ # Training data
70
 
71
+ This is an optional link to where the training data is stored if it is too large
72
+ to host on the huggingface Model hub.
73
 
74
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
75
  sure to provide this field if you want users to be able to access your training data. See the
76
  scvi-tools documentation for details. -->
 
77
 
78
+ Training data url: N/A
 
79
 
80
+ # Training code
81
 
82
+ This is an optional link to the code used to train the model.
83
 
84
+ Training code url: N/A
85
 
86
  # References
87
 
88
+ To be added...