--- library_name: scvi-tools license: cc-by-4.0 tags: - biology - genomics - single-cell - model_cls_name:SCVI - scvi_version:1.2.0 - anndata_version:0.11.1 - modality:rna - tissue:various - annotated:True --- ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying latent space, integrate technical batches and impute dropouts. The learned low-dimensional latent representation of the data can be used for visualization and clustering. scVI takes as input a scRNA-seq gene expression matrix with cells and genes. We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html). - See our original manuscript for further details of the model: [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2). - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how to leverage pre-trained models. This model can be used for fine tuning on new data using our Arches framework: [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html). # Model Description Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects. # Metrics We provide here key performance metrics for the uploaded model, if provided by the data uploader.
Coefficient of variation The cell-wise coefficient of variation summarizes how well variation between different cells is preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4 , we would recommend not to use generated data for downstream analysis, while the generated latent space might still be useful for analysis. **Cell-wise Coefficient of Variation**: | Metric | Training Value | Validation Value | |-------------------------|----------------|------------------| | Mean Absolute Error | 1.14 | 1.22 | | Pearson Correlation | 0.89 | 0.86 | | Spearman Correlation | 0.88 | 0.86 | | R² (R-Squared) | 0.75 | 0.69 | The gene-wise coefficient of variation summarizes how well variation between different genes is preserved by the generated model expression. This value is usually quite high. **Gene-wise Coefficient of Variation**: | Metric | Training Value | |-------------------------|----------------| | Mean Absolute Error | 16.76 | | Pearson Correlation | 0.63 | | Spearman Correlation | 0.67 | | R² (R-Squared) | -1.67 |
Differential expression metric The differential expression metric provides a summary of the differential expression analysis between cell types or input clusters. We provide here the F1-score, Pearson Correlation Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each cell-type. **Differential expression**: | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells | | --- | --- | --- | --- | --- | --- | --- | --- | | basal cell | 0.92 | 0.32 | 0.86 | 0.96 | 0.43 | 0.89 | 6281.00 | | keratinocyte | 0.88 | 0.79 | 0.75 | 0.97 | 0.23 | 0.90 | 3667.00 | | epithelial cell | 0.84 | 0.54 | 0.71 | 0.93 | 0.53 | 0.87 | 2114.00 | | leukocyte | 0.85 | 0.76 | 0.70 | 0.94 | 0.38 | 0.87 | 2109.00 | | fibroblast | 0.79 | 2.62 | 0.58 | 0.82 | 0.44 | 0.80 | 251.00 | | vein endothelial cell | 0.81 | 2.90 | 0.63 | 0.82 | 0.46 | 0.81 | 226.00 | | pericyte | 0.79 | 3.66 | 0.59 | 0.72 | 0.41 | 0.72 | 117.00 | | capillary endothelial cell | 0.78 | 3.85 | 0.64 | 0.74 | 0.44 | 0.74 | 101.00 | | tongue muscle cell | 0.76 | 5.43 | 0.55 | 0.57 | 0.38 | 0.70 | 60.00 | | endothelial cell of lymphatic vessel | 0.60 | 5.63 | 0.53 | 0.52 | 0.42 | 0.69 | 44.00 | | endothelial cell of artery | 0.69 | 4.79 | 0.63 | 0.66 | 0.40 | 0.71 | 40.00 |
# Model Properties We provide here key parameters used to setup and train the model.
Model Parameters These provide the settings to setup the original model: ```json { "n_hidden": 128, "n_latent": 20, "n_layers": 3, "dropout_rate": 0.05, "dispersion": "gene", "gene_likelihood": "nb", "latent_distribution": "normal", "use_batch_norm": "none", "use_layer_norm": "both", "encode_covariates": true } ```
Setup Data Arguments Arguments passed to setup_anndata of the original model: ```json { "layer": null, "batch_key": "donor_assay", "labels_key": "cell_ontology_class", "size_factor_key": null, "categorical_covariate_keys": null, "continuous_covariate_keys": null } ```
Data Registry Registry elements for AnnData manager: | Registry Key | scvi-tools Location | |-------------------|--------------------------------------| | X | adata.X | | batch | adata.obs['_scvi_batch'] | | labels | adata.obs['_scvi_labels'] | | latent_qzm | adata.obsm['scvi_latent_qzm'] | | latent_qzv | adata.obsm['scvi_latent_qzv'] | | minify_type | adata.uns['_scvi_adata_minify_type'] | | observed_lib_size | adata.obs['observed_lib_size'] | - **Data is Minified**: False
Summary Statistics | Summary Stat Key | Value | |--------------------------|-------| | n_batch | 4 | | n_cells | 15010 | | n_extra_categorical_covs | 0 | | n_extra_continuous_covs | 0 | | n_labels | 11 | | n_latent_qzm | 20 | | n_latent_qzv | 20 | | n_vars | 3000 |
Training **Training data url**: Not provided by uploader If provided by the original uploader, for those interested in understanding or replicating the training process, the code is available at the link below. **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
# References The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896