Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,27 +1,124 @@
|
|
1 |
---
|
2 |
-
license: cc-by-4.0
|
3 |
library_name: scvi-tools
|
|
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCANVI
|
9 |
-
- scvi_version:1.
|
10 |
-
- anndata_version:0.
|
11 |
- modality:rna
|
12 |
-
- tissue:
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
16 |
-
# Description
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
Many model properties are in the model tags. Some more are listed below.
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
```json
|
26 |
{
|
27 |
"n_hidden": 128,
|
@@ -38,7 +135,12 @@ Many model properties are in the model tags. Some more are listed below.
|
|
38 |
}
|
39 |
```
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
```json
|
43 |
{
|
44 |
"labels_key": "cell_ontology_class",
|
@@ -47,11 +149,34 @@ Many model properties are in the model tags. Some more are listed below.
|
|
47 |
"batch_key": "donor_assay",
|
48 |
"size_factor_key": null,
|
49 |
"categorical_covariate_keys": null,
|
50 |
-
"continuous_covariate_keys": null
|
|
|
51 |
}
|
52 |
```
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
| Summary Stat Key | Value |
|
56 |
|--------------------------|-------|
|
57 |
| n_batch | 4 |
|
@@ -61,40 +186,27 @@ Many model properties are in the model tags. Some more are listed below.
|
|
61 |
| n_labels | 23 |
|
62 |
| n_latent_qzm | 20 |
|
63 |
| n_latent_qzv | 20 |
|
64 |
-
| n_vars |
|
65 |
-
|
66 |
-
**model_data_registry**:
|
67 |
-
| Registry Key | scvi-tools Location |
|
68 |
-
|-------------------|----------------------------------------|
|
69 |
-
| X | adata.X |
|
70 |
-
| batch | adata.obs['_scvi_batch'] |
|
71 |
-
| labels | adata.obs['_scvi_labels'] |
|
72 |
-
| latent_qzm | adata.obsm['_scanvi_latent_qzm'] |
|
73 |
-
| latent_qzv | adata.obsm['_scanvi_latent_qzv'] |
|
74 |
-
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
75 |
-
| observed_lib_size | adata.obs['_scanvi_observed_lib_size'] |
|
76 |
-
|
77 |
-
**model_parent_module**: scvi.model
|
78 |
|
79 |
-
|
80 |
|
81 |
-
# Training data
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
87 |
-
sure to provide this field if you want users to be able to access your training data. See the
|
88 |
-
documentation for details. -->
|
|
|
89 |
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
|
94 |
-
|
95 |
|
96 |
-
Training code url: N/A
|
97 |
|
98 |
# References
|
99 |
|
100 |
-
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|
|
|
1 |
---
|
|
|
2 |
library_name: scvi-tools
|
3 |
+
license: cc-by-4.0
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- single-cell
|
8 |
- model_cls_name:SCANVI
|
9 |
+
- scvi_version:1.2.0
|
10 |
+
- anndata_version:0.11.1
|
11 |
- modality:rna
|
12 |
+
- tissue:various
|
13 |
- annotated:True
|
14 |
---
|
15 |
|
|
|
16 |
|
17 |
+
ScANVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
|
18 |
+
latent space, integrate technical batches and impute dropouts.
|
19 |
+
In addition, to scVI, ScANVI is a semi-supervised model that can leverage labeled data to learn a
|
20 |
+
cell-type classifier in the latent space and afterward predict cell types of new data.
|
21 |
+
The learned low-dimensional latent representation of the data can be used for visualization and
|
22 |
+
clustering.
|
23 |
+
|
24 |
+
scANVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
|
25 |
+
cell-type annotation for a subset of cells.
|
26 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scanvi.html).
|
27 |
+
|
28 |
+
- See our original manuscript for further details of the model:
|
29 |
+
[scANVI manuscript](https://www.embopress.org/doi/full/10.15252/msb.20209620).
|
30 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
|
31 |
+
how to leverage pre-trained models.
|
32 |
|
33 |
+
This model can be used for fine tuning on new data using our Arches framework:
|
34 |
+
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
35 |
|
|
|
36 |
|
37 |
+
# Model Description
|
38 |
+
|
39 |
+
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
|
40 |
+
|
41 |
+
# Metrics
|
42 |
+
|
43 |
+
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
44 |
+
|
45 |
+
<details>
|
46 |
+
<summary><strong>Coefficient of variation</strong></summary>
|
47 |
+
|
48 |
+
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
49 |
+
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
50 |
+
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
51 |
+
space might still be useful for analysis.
|
52 |
+
|
53 |
+
**Cell-wise Coefficient of Variation**:
|
54 |
+
|
55 |
+
| Metric | Training Value | Validation Value |
|
56 |
+
|-------------------------|----------------|------------------|
|
57 |
+
| Mean Absolute Error | 1.74 | 1.80 |
|
58 |
+
| Pearson Correlation | 0.83 | 0.80 |
|
59 |
+
| Spearman Correlation | 0.76 | 0.74 |
|
60 |
+
| R² (R-Squared) | 0.43 | 0.38 |
|
61 |
+
|
62 |
+
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
63 |
+
preserved by the generated model expression. This value is usually quite high.
|
64 |
+
|
65 |
+
**Gene-wise Coefficient of Variation**:
|
66 |
+
|
67 |
+
| Metric | Training Value |
|
68 |
+
|-------------------------|----------------|
|
69 |
+
| Mean Absolute Error | 19.41 |
|
70 |
+
| Pearson Correlation | 0.66 |
|
71 |
+
| Spearman Correlation | 0.73 |
|
72 |
+
| R² (R-Squared) | -0.72 |
|
73 |
+
|
74 |
+
</details>
|
75 |
+
|
76 |
+
<details>
|
77 |
+
<summary><strong>Differential expression metric</strong></summary>
|
78 |
+
|
79 |
+
The differential expression metric provides a summary of the differential expression analysis
|
80 |
+
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
81 |
+
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
82 |
+
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
83 |
+
cell-type.
|
84 |
+
|
85 |
+
**Differential expression**:
|
86 |
+
|
87 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
88 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
89 |
+
| neutrophil | 0.97 | 1.62 | 0.67 | 0.87 | 0.12 | 0.86 | 4486.00 |
|
90 |
+
| memory B cell | 0.98 | 1.13 | 0.59 | 0.93 | 0.34 | 0.87 | 4391.00 |
|
91 |
+
| CD8-positive, alpha-beta memory T cell | 0.93 | 1.74 | 0.63 | 0.91 | 0.32 | 0.83 | 3479.00 |
|
92 |
+
| classical monocyte | 0.94 | 1.05 | 0.71 | 0.92 | 0.33 | 0.85 | 3450.00 |
|
93 |
+
| plasma cell | 0.84 | 0.97 | 0.76 | 0.96 | 0.38 | 0.93 | 2366.00 |
|
94 |
+
| mature NK T cell | 0.95 | 2.29 | 0.57 | 0.85 | 0.33 | 0.80 | 1820.00 |
|
95 |
+
| CD4-positive, alpha-beta memory T cell | 0.90 | 2.36 | 0.62 | 0.84 | 0.29 | 0.78 | 1463.00 |
|
96 |
+
| type I NK T cell | 0.91 | 2.81 | 0.57 | 0.80 | 0.33 | 0.76 | 1038.00 |
|
97 |
+
| naive thymus-derived CD4-positive, alpha-beta T cell | 0.90 | 2.77 | 0.60 | 0.83 | 0.30 | 0.77 | 1025.00 |
|
98 |
+
| macrophage | 0.90 | 1.85 | 0.73 | 0.90 | 0.40 | 0.83 | 892.00 |
|
99 |
+
| naive B cell | 0.88 | 3.65 | 0.58 | 0.71 | 0.28 | 0.70 | 478.00 |
|
100 |
+
| endothelial cell | 0.74 | 1.87 | 0.77 | 0.94 | 0.56 | 0.91 | 438.00 |
|
101 |
+
| naive thymus-derived CD8-positive, alpha-beta T cell | 0.83 | 4.19 | 0.58 | 0.65 | 0.32 | 0.62 | 232.00 |
|
102 |
+
| regulatory T cell | 0.85 | 4.38 | 0.57 | 0.69 | 0.38 | 0.74 | 232.00 |
|
103 |
+
| erythrocyte | 0.88 | 3.91 | 0.68 | 0.70 | 0.27 | 0.89 | 142.00 |
|
104 |
+
| intermediate monocyte | 0.86 | 4.69 | 0.57 | 0.59 | 0.33 | 0.74 | 131.00 |
|
105 |
+
| innate lymphoid cell | 0.71 | 5.28 | 0.55 | 0.55 | 0.37 | 0.62 | 90.00 |
|
106 |
+
| hematopoietic stem cell | 0.63 | 3.80 | 0.66 | 0.75 | 0.53 | 0.84 | 73.00 |
|
107 |
+
| plasmacytoid dendritic cell | 0.63 | 5.07 | 0.57 | 0.50 | 0.35 | 0.70 | 37.00 |
|
108 |
+
| CD1c-positive myeloid dendritic cell | 0.58 | 5.33 | 0.56 | 0.44 | 0.38 | 0.62 | 26.00 |
|
109 |
+
| platelet | 0.64 | 6.57 | 0.48 | 0.40 | 0.41 | 0.70 | 18.00 |
|
110 |
+
| CD141-positive myeloid dendritic cell | 0.53 | 5.46 | 0.57 | 0.52 | 0.39 | 0.67 | 18.00 |
|
111 |
+
|
112 |
+
</details>
|
113 |
+
|
114 |
+
# Model Properties
|
115 |
+
|
116 |
+
We provide here key parameters used to setup and train the model.
|
117 |
+
|
118 |
+
<details>
|
119 |
+
<summary><strong>Model Parameters</strong></summary>
|
120 |
+
|
121 |
+
These provide the settings to setup the original model:
|
122 |
```json
|
123 |
{
|
124 |
"n_hidden": 128,
|
|
|
135 |
}
|
136 |
```
|
137 |
|
138 |
+
</details>
|
139 |
+
|
140 |
+
<details>
|
141 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
142 |
+
|
143 |
+
Arguments passed to setup_anndata of the original model:
|
144 |
```json
|
145 |
{
|
146 |
"labels_key": "cell_ontology_class",
|
|
|
149 |
"batch_key": "donor_assay",
|
150 |
"size_factor_key": null,
|
151 |
"categorical_covariate_keys": null,
|
152 |
+
"continuous_covariate_keys": null,
|
153 |
+
"use_minified": false
|
154 |
}
|
155 |
```
|
156 |
|
157 |
+
</details>
|
158 |
+
|
159 |
+
<details>
|
160 |
+
<summary><strong>Data Registry</strong></summary>
|
161 |
+
|
162 |
+
Registry elements for AnnData manager:
|
163 |
+
| Registry Key | scvi-tools Location |
|
164 |
+
|-------------------|--------------------------------------|
|
165 |
+
| X | adata.X |
|
166 |
+
| batch | adata.obs['_scvi_batch'] |
|
167 |
+
| labels | adata.obs['_scvi_labels'] |
|
168 |
+
| latent_qzm | adata.obsm['scanvi_latent_qzm'] |
|
169 |
+
| latent_qzv | adata.obsm['scanvi_latent_qzv'] |
|
170 |
+
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
171 |
+
| observed_lib_size | adata.obs['observed_lib_size'] |
|
172 |
+
|
173 |
+
- **Data is Minified**: False
|
174 |
+
|
175 |
+
</details>
|
176 |
+
|
177 |
+
<details>
|
178 |
+
<summary><strong>Summary Statistics</strong></summary>
|
179 |
+
|
180 |
| Summary Stat Key | Value |
|
181 |
|--------------------------|-------|
|
182 |
| n_batch | 4 |
|
|
|
186 |
| n_labels | 23 |
|
187 |
| n_latent_qzm | 20 |
|
188 |
| n_latent_qzv | 20 |
|
189 |
+
| n_vars | 3000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
</details>
|
192 |
|
|
|
193 |
|
194 |
+
<details>
|
195 |
+
<summary><strong>Training</strong></summary>
|
196 |
|
197 |
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
198 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
199 |
+
scvi-tools documentation for details. -->
|
200 |
+
**Training data url**: Not provided by uploader
|
201 |
|
202 |
+
If provided by the original uploader, for those interested in understanding or replicating the
|
203 |
+
training process, the code is available at the link below.
|
204 |
|
205 |
+
**Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
|
206 |
|
207 |
+
</details>
|
208 |
|
|
|
209 |
|
210 |
# References
|
211 |
|
212 |
+
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
|