Upload train.py
Browse files
train.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# let's import the libraries first
|
2 |
+
import sklearn
|
3 |
+
from sklearn.datasets import load_breast_cancer
|
4 |
+
from sklearn.tree import DecisionTreeClassifier
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from skops import card, hub_utils
|
7 |
+
import pickle
|
8 |
+
from sklearn.metrics import (ConfusionMatrixDisplay, confusion_matrix,
|
9 |
+
accuracy_score, f1_score)
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
# Load the data and split
|
14 |
+
X, y = load_breast_cancer(as_frame=True, return_X_y=True)
|
15 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
16 |
+
X, y, test_size=0.3, random_state=42
|
17 |
+
)
|
18 |
+
|
19 |
+
# Train the model
|
20 |
+
model = DecisionTreeClassifier().fit(X_train, y_train)
|
21 |
+
|
22 |
+
# let's save the model
|
23 |
+
model_path = "example.pkl"
|
24 |
+
local_repo = "my-awesome-model"
|
25 |
+
with open(model_path, mode="bw") as f:
|
26 |
+
pickle.dump(model, file=f)
|
27 |
+
|
28 |
+
# we will now initialize a local repository
|
29 |
+
hub_utils.init(
|
30 |
+
model=model_path,
|
31 |
+
requirements=[f"scikit-learn={sklearn.__version__}"],
|
32 |
+
dst=local_repo,
|
33 |
+
task="tabular-classification",
|
34 |
+
data=X_test,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
# create the card
|
39 |
+
model_card = card.Card(model, metadata=card.metadata_from_config(Path(destination_folder)))
|
40 |
+
|
41 |
+
limitations = "This model is not ready to be used in production."
|
42 |
+
model_description = "This is a DecisionTreeClassifier model trained on breast cancer dataset."
|
43 |
+
model_card_authors = "skops_user"
|
44 |
+
get_started_code = "import pickle \nwith open(dtc_pkl_filename, 'rb') as file: \n clf = pickle.load(file)"
|
45 |
+
citation_bibtex = "bibtex\n@inproceedings{...,year={2020}}"
|
46 |
+
|
47 |
+
# we can add the information using add
|
48 |
+
model_card.add(
|
49 |
+
citation_bibtex=citation_bibtex,
|
50 |
+
get_started_code=get_started_code,
|
51 |
+
model_card_authors=model_card_authors,
|
52 |
+
limitations=limitations,
|
53 |
+
model_description=model_description,
|
54 |
+
)
|
55 |
+
|
56 |
+
# we can set the metadata part directly
|
57 |
+
model_card.metadata.license = "mit"
|
58 |
+
|
59 |
+
# let's make a prediction and evaluate the model
|
60 |
+
y_pred = model.predict(X_test)
|
61 |
+
|
62 |
+
# we can pass metrics using add_metrics and pass details with add
|
63 |
+
model_card.add(eval_method="The model is evaluated using test split, on accuracy and F1 score with macro average.")
|
64 |
+
model_card.add_metrics(accuracy=accuracy_score(y_test, y_pred))
|
65 |
+
model_card.add_metrics(**{"f1 score": f1_score(y_test, y_pred, average="micro")})
|
66 |
+
|
67 |
+
# we will create a confusion matrix
|
68 |
+
cm = confusion_matrix(y_test, y_pred, labels=model.classes_)
|
69 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
|
70 |
+
disp.plot()
|
71 |
+
|
72 |
+
# save the plot
|
73 |
+
plt.savefig(Path(local_repo) / "confusion_matrix.png")
|
74 |
+
|
75 |
+
# the plot will be written to the model card under the name confusion_matrix
|
76 |
+
# we pass the path of the plot itself
|
77 |
+
model_card.add_plot(confusion_matrix="confusion_matrix.png")
|
78 |
+
|
79 |
+
# save the card
|
80 |
+
model_card.save(Path(local_repo) / "README.md")
|
81 |
+
|
82 |
+
# if the repository doesn't exist remotely on the Hugging Face Hub, it will be created when we set create_remote to True
|
83 |
+
repo_id = "skops-user/my-awesome-model"
|
84 |
+
hub_utils.push(
|
85 |
+
repo_id=repo_id,
|
86 |
+
source=local_repo,
|
87 |
+
token=token,
|
88 |
+
commit_message="pushing files to the repo from the example!",
|
89 |
+
create_remote=True,
|
90 |
+
)
|
91 |
+
|